

SAFEGUARD

Quantifying effects of interventions on genetic diversity and functional trait composition of pollinators

Deliverable D4.1

28 February 2025

Gabrielle McLaughlin¹, Klara Leander Oh², Jürg Enkerli¹, David Kleijn², Jeroen Schepers² and Matthias Albrecht¹

¹ Agroecology and Environment, Agroscope, Zürich, Switzerland

² Plant Ecology and Nature Conservation Group, Wageningen University & Research, Droevedaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands

Safeguard
Safeguarding European wild pollinators

This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101003476.

Prepared under contract from the European Commission

Grant agreement No. 101003476.

EU Horizon 2020 Research and Innovation action

Project acronym	Safeguard
Project full title	Safeguarding European wild pollinators
Start of the project	September 2021
Duration	48 months
Project coordinator	Ingolf Steffan-Dewenter Julius-Maximilians-Universität Würzburg https://www.safeguard.biozentrum.uni-wuerzburg.de/
Deliverable title	Quantifying effects of interventions on genetic diversity and functional trait composition of pollinators
Deliverable n°	D4.1
Nature of the deliverable	Report
Dissemination level	Public
WP responsible	WP4
Lead beneficiary	Eidgenössisches Departement für Wirtschaft, Bildung und Forschung (WBF) McLaughlin, G., Leander Oh, K., Enkerli, J., Kleijn, D., Scheper, J. & Albrecht, M. (2025). <i>Quantifying effects of interventions on genetic diversity and functional trait composition of pollinators</i> . Deliverable D4.1 EU Horizon 2020 Safeguard Project, Grant agreement No 101003476.
Citation	
Due date of deliverable	Month n°48
Actual submission date	Month n°48

Deliverable status:

Versio n	Status	Date	Author(s)	Reviewer(s)
1.0	Final	28 February 2025	McLaughlin, Leander Oh, et al., WBF, WU	Enkerli WBF

The content of this deliverable does not necessarily reflect the official opinions of the European Commission or other institutions of the European Union.

Table of contents

Preface	4
Summary	4
List of abbreviations	5
1. Introduction	5
2. Methods	7
2.1. Population sampling	7
2.2 Genomic library preparation and processing	9
2.3. Analyses of genetic diversity, population structure and effective population size	10
2.4 Trait measurements	11
2.5 Data analyses of trait measurements	11
3. Results	11
3.1 Genomic data	11
3.2 Genetic diversity of populations	12
3.3 Quantifying genetic structure	13
3.4 Landscape-level habitat influence on body size	15
3.5 Landscape-level habitat influence on intraspecific trait variation	17
4. Discussion	19
4.1 Genetic diversity	20
4.2 Genetic differentiation	20
4.3 Functional traits	21
4.4 Conclusion	23
5. Acknowledgements	23
6. References	23

Preface

Pollinators form a substantial part of global biodiversity and play a crucial role in the maintenance of food security and human well-being. However, pollinator populations are facing significant declines due to anthropogenic pressures, including land-use change, climate change, and pesticide use. To mitigate loss and degradation of suitable habitats in agroecosystems, conservation and restoration measures, such as the maintenance of semi-natural habitats and the implementation of agri-environment schemes, have been fostered during the last decades through environmental and agricultural policies in Europe. Although we have a thorough understanding of the effects of such conservation interventions on pollinator diversity and abundance, their long-term impacts on genetic diversity, genetic population structure, effective population sizes, and on functional (intraspecific) trait diversity remain largely unknown. In Task 4.1 we address these knowledge gaps by implementing a paired sampling design across 66 sites in Europe, collecting focal wild bee species from agricultural landscapes with contrasting proportions of long-term interventions and by analyzing data through combined molecular and trait-based methods.

Summary

Understanding how conservation interventions impact wild pollinators is crucial for maintaining ecosystem services in agricultural landscapes. In Task 4.1, We combined population genetics and trait-based methods to quantify levels of genetic diversity and differentiation, as well as body size and variation in wild bee species with contrasting traits; large-bodied *Bombus pascuorum* and medium-/small-bodied *Halictus scabiosae* and *LasioGLOSSUM villosum*. Specimens were collected from 66 sites (33 pairs) across multiple European countries. Sites pairs were selected with contrasting proportions of long-term (≥ 10 years) agri-environment interventions. Genetic analyses, conducted using double digest Restriction Site Associated DNA sequencing (ddRADseq), indicate population structure in both *B. pascuorum* and *H. scabiosae* at the European scale, but a lack of structure within regions. Locally, there were little to no differences in genetic diversity measures among areas with low or high proportions of long-term interventions, suggesting high levels of gene flow and connectivity among sites. While our results indicate that *B. pascuorum* and *H. scabiosae* are likely well adapted to agricultural landscapes, there were two exceptions. In the United Kingdom and Switzerland, *B. pascuorum* exhibited divergent responses in body size and intraspecific trait variation, suggesting potential plastic responses to environmental factors. These diverging patterns warrant further investigation into resource allocation strategies under different landscape conditions. *L. villosum* exhibited higher intraspecific trait variation in low-proportion landscapes, indicating a potentially adaptive response to limited or patchy floral resources. By integrating population genetics with functional trait analyses, we highlight how gene flow and phenotypic plasticity can shape pollinator responses to land use. Finally, establishing baseline genetic and trait data is essential for long-term monitoring, enabling early detection of population declines and ensuring the resilience of pollinators in human-modified landscapes.

List of abbreviations

CV	Coefficient of Variation
ITD	Inter-tegular distance
ITV	Intraspecific trait variation

DNA	Deoxyribonucleic acid
ddRADseq	Double Digest Restriction Site Associated DNA sequencing
AES	Agri-environment schemes

1. Introduction

Pollinators, both managed and wild, form a substantial part of global biodiversity and play a vital role in the maintenance of food security, ecosystem stability and human well-being. Wild pollinators, including wild bees, provide key pollination services for native plant species and commercial crops, contributing significantly to global crop yields and the persistence of diverse plant communities (Klein *et al.*, 2007; Potts *et al.*, 2010). Despite their undeniable importance, wild bees, alongside other insect pollinators, are experiencing global declines due to anthropogenic pressures. Among the primary drivers to pollinator loss are human induced land use change and intensification, climate change and pesticide-use (Klein *et al.*, 2018; Lebuhn & Vargas, 2021; Potts *et al.*, 2016). These factors often interact, potentially leading to population declines, which can subsequently disrupt plant-pollinator networks, reduce plant reproductive success, and compromise overall ecosystem function (Mathiasson & Rehan, 2020; Lebuhn & Vargas, 2021; Potts *et al.*, 2010). In response to these challenges, there has been a growing recognition of the importance of implementing conservation measures that promote the preservation and restoration of pollinator habitats. In agricultural landscapes, the creation and restoration of habitat for pollinators and pollinator-friendly management through the implementation of agri-environment schemes (AES) are, besides the maintenance of semi-natural habitats, among the most important measures to promote pollinators (Batary *et al.*, 2015; Kovács-Hostyánszki *et al.*, 2017). Semi-natural habitats, such as calcareous grasslands or wildflower strips, and extensively managed agricultural meadows promoted through AES have been shown to promote pollinator diversity by providing crucial resources, including nesting sites, floral resources and shelter for pollinators (Maurer *et al.*, 2022; Boetzl *et al.* 2021; Langlois *et al.*, 2020; Albrecht *et al.*, 2007). While many studies have demonstrated the short-term impacts of these interventions on pollinator abundance and diversity, their long-term effects on population genetics and functional trait diversity remain largely unexplored.

Body size is a functional trait that plays an important role in bee ecology: it can affect foraging and dispersal distances (Kendall *et al.*, 2022), pollination capacity (both in terms of quantity of pollen carried, as well as the diversity of flower species visited) (Jauker *et al.*, 2016; Renauld *et al.*, 2016), brood provision, temperature regulation, and predation risk (Chole *et al.*, 2019; Gavini *et al.*, 2020). In turn, bee body size is influenced directly by diet, temperature, and brood cell size, and in eusocial bees, complex interactions between the queen, workers, and brood (Chole *et al.*, 2019). It can also be influenced by land use change (i.e., declines in habitat quality and quantity, and fragmentation), with potential consequences for pollination services in simplified landscapes (Gérard *et al.*, 2020; Grab *et al.*, 2019; Oliveira *et al.*, 2016). However, there is no one-size-fits-all response to these external pressures. Smaller body sizes may be more energetically efficient when resources are limited (Chole *et al.*, 2019; McNab, 2010), yet larger body sizes can be beneficial in fragmented landscapes, given that foraging distance increases with body size (Greenleaf *et al.*, 2007; Warzecha *et al.*, 2016). Larger bee body sizes have also been associated with population declines, possibly due to their higher requirements for pollen (Scheper *et al.*, 2014).

Intraspecific variation in bee body size can also play a role in a species' ability to adapt to adverse conditions and thus reduce their susceptibility to decline (Austin & Dunlap, 2019). Higher within-colony intraspecific trait variation (ITV) in bumblebees can expand the variety

of flowering plant species the colony is able to forage from (Peat *et al.*, 2005; Vaudo *et al.*, 2015), increasing their resilience to changes in floral resource availability. This can also increase the pollen variability in their diet, which can positively affect their immune systems and thus resilience to parasites and disease (Vaudo *et al.*, 2015). Further, intraspecific variation in body size can affect how pollinators interact with the plant community: solitary bees with high ITV, and social bees with low ITV, have been found to be more central in their plant-pollinator networks, and interact with a more diverse range of flowering plants (Peralta *et al.*, 2024). As a result, changes to their population dynamics could significantly influence the plant community.

Additionally, population genetics can provide valuable insights into the response of pollinator populations and communities to ecological factors and conservation interventions. Theory predicts that fragmented populations will experience increased genetic drift due to smaller effective population sizes, as well as reduced gene flow resulting from limited inter-patch dispersal (Wright, 1943). These processes can subsequently lead to decreased genetic diversity within populations and increased genetic differentiation among them. In turn, these responses may then reduce adaptability and increase inbreeding, ultimately leading to greater extinction risks (Frankham, 2005). By examining the interactions between landscape features and microevolutionary processes such as gene flow, genetic drift or selection, we can gain a deeper understanding of pollinator diversity trends, better identify species of concern, and better understand how species react to applied measures (Lopez-Uribe *et al.*, 2017; Manel *et al.*, 2003). In agreement, previous studies have shown that stable species exhibited limited population structure when faced with land-use changes, whereas rare species displayed increased population structure across their range, along with locally reduced genetic diversity and smaller population sizes (Dreier *et al.*, 2014; Mola *et al.*, 2024). Since AES often aim to improve connectivity for pollinators, among other resources, in intensively managed landscapes, and since connectivity plays a crucial role in gene flow, investigating the local genetic processes in response to such interventions will allow us to better assess current management schemes. It will also provide crucial information to better assess population viability, compare population genetic measures with stable species, identify and set targets for declining species and to effectively develop and implement future management efforts.

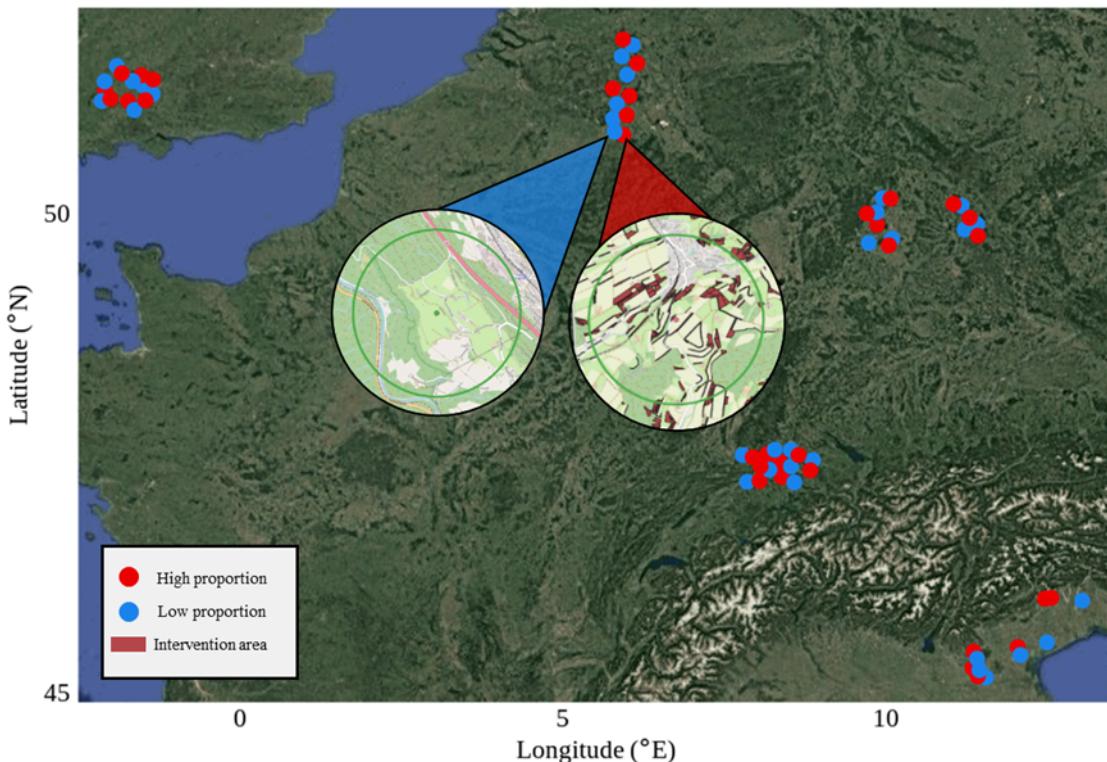
Recent developments of sequencing technologies, particularly of double digest Restriction Site Associated DNA (ddRADseq) sequencing, enables an affordable approach for the genotyping of non-model organisms without the use of a reference genome (Andrews *et al.*, 2016). Genetic analyses can therefore complement traditional species abundance and diversity descriptors, as well as functional trait measures to better understand and predict pollinator responses to applied conservation strategies. In particular, integrating population genetics with functional trait analyses provides insight into both long-term population stability and the ecological performance of species in human-modified environments. Since functional traits influence fitness and subsequently population persistence (McGill *et al.*, 2006; Ostwald *et al.*, 2024), examining their variation alongside genetic structure can reveal whether phenotypic divergence is driven by selection or by environmental plasticity (Crispo, 2008).

In Task 4.1, we implemented a paired sampling design across Europe to assess the impacts of long-term agri-environment interventions on wild bee populations through genomic and functional trait analyses. Specifically, we examined how areas with high- compared to low- proportions of interventions influence wild bee population genetics, including genetic diversity, differentiation and effective population sizes, as well as their impacts on functional trait diversity. We chose *Bombus pascuorum*, *Halictus scabiosae*, and *Lasioglossum villosum* as our study species, as these reflect a range of body sizes, with *B. pascuorum* being large-bodied, while *H. scabiosae* and *L. villosum* being medium-/small-bodied. Assessing species with varying traits such as these allowed us to not only gather important

baseline genetic information for a variety of taxa, but also to investigate whether smaller, potentially more restricted species differ in their responses to AES compared to larger, likely more widespread species. We also investigated whether these effects varied among these species, and across intervention types and countries.

2. Methods

2.1. Population sampling


In the spring and summer of 2023 or 2024 (Italy), paired populations of two bee species with differing life history traits (*Bombus pascuorum* and a second smaller species, either *Halictus scabiosae* or *Lasiglossum villosum*), were collected from a total of 66 sites (33 pairs) with contrasting proportions of long-term (≥ 10 years) intervention areas (e.g., calcareous grasslands, extensively managed meadows, etc. see Table 1) separated by ≥ 6 km within a pair and ≥ 10 km among pairs (Figure 1). Focal habitat amounts were quantified by Geographic Information System (GIS) within 2km buffer radii, and specimens were collected within the inner 1km radius. This sampling scheme was replicated in five countries for *B. pascuorum*, in three countries for *H. scabiosae* and in one country for *L. villosum* (Table 1). Since *L. villosum* was collected in only one country, it was omitted from genetic analyses (but maintained in the trait analyses) as it could not contribute to cross-country genetic structure or diversity comparisons. Unfortunately, additional partners were unable to participate, either due to scheduling conflicts or to unusually low numbers in the sampling year.

Within each site, we aimed to collect 20+ workers of *B. pascuorum* and 15+ specimens of either *H. scabiosae* or *L. villosum* by hand netting specimens directly into 95% ethanol. Samples were stored at -20°C until later processing. To minimize the probability of sampling related individuals, efforts were made to spread sampling across the site area and on different visits to avoid capturing two individuals of the same species at the same place and time.

It is also to be noted that our sampling design has omitted a third landscape type (the control, protected habitat area). On the one hand, selecting sufficient numbers of replicates, with all three landscape types, while maintaining the necessary within- and among- site minimum distances to ensure site independence was simply not feasible given the relatively small size of many participating countries. Secondly, the time required to sample specimens in high enough numbers while ensuring minimal relatedness for genetic analyses across additional sites would have been extremely demanding. Therefore, we preferred to focus on a well selected, paired design with sufficient numbers to allow for statistically powerful analyses, while still enabling us to address questions regarding the implementation of long-term agri-environment schemes in the landscape.

Table 1: Sampling scheme overview within each participating country and the number of specimens measured per country, species, caste (if applicable), and landscape type. Low = low-proportion of long-term interventions; high = high-proportion of long-term interventions.

Country	Intervention type	n° Sites (n° pairs)	Species	Caste	Landscape type	n° Specimens Trait analyses	n° Specimens Genetic analyses (after filtering)	
Italy	Semi-natural areas. Established for 25+ years.	12 (6)	<i>B. pascuorum</i>	Worker	Low	118	68	
					High	120	97	
Netherlands	Semi-natural, flora-rich grasslands that are part of the Nature Network (NNN) in the Netherlands. Established for 15+ years.	12 (6)	<i>B. pascuorum</i>	Worker	Low	121	70	
					High	119	72	
Germany	Calcareous grasslands. Established for 60+ years.	12 (6)	<i>B. pascuorum</i>	Worker	Low	141	110	
					High	143	106	
United Kingdom	Calcareous grassland, protected and extensively managed primarily through conservation grazing. Variable years of establishment.	12 (6)	<i>B. pascuorum</i>	Worker	Low	111	0	
					High	141	0	
Switzerland	Extensively managed meadows under the Swiss agri-environment scheme for meadow extensification. Established for 14+ years.	16 (8)	<i>B. pascuorum</i>	Queen	Low	33	N/A	
					High	57	N/A	
				Worker	Low	137	155	
					High	116	145	
		16 (8)	<i>H. scabiosae</i>	N/A	Low	115	105	
					High	105	91	

Figure 1: Location of the 66 study sites across Italy, Germany, Netherlands, Switzerland and the United Kingdom. Highlighted are examples of a site pair (high-proportion of long-term intervention area and low-proportion of long-term intervention area), showing landscape configurations within a 2km buffer radius.

2.2 Genomic library preparation and processing

DNA was extracted from the legs of 1,356 *B. pascuorum* and of 539 *H. scabiosae* using the LGC Sbeadex Plant Kit adapted for KingFisher Sample Purification System (Thermo Fisher Scientific). DNA quality was assessed visually by electrophoresis on 1% agarose gels and quantified using PicoGreen fluorescent nucleic acid stain (Invitrogen). Samples were then randomized on 96-well plates and diluted to 5ng/uL for *B. pascuorum* and to 3ng/uL for *H. scabiosae*. The Double Digest Restriction Enzyme Associated DNA sequencing (ddRADseq) libraries were prepared according to the protocol by Westergaard *et al.* (2019). Briefly, DNA was double-digested with EcoRI-HF and TaqI-v2 restriction enzymes and ligated to Illumina barcoded adapters. Barcoded samples were then pooled by species and size selected to ~550pb libraries using 0.58x AMPure beads. Libraries were then washed and purified to select for P2-biotin labeled adaptors, and 12 PCR cycles were run to enrich the libraries with Illumina indexes. Finally, libraries were quantified by Qubit, fragment-size assessed on an Agilent 2200 Tape station, and pooled libraries were sequenced on a NovaSeq6000 platform with 150bp paired-end reads (Novogene). Resulting raw sequences were demultiplexed and processed (based on R packages stacks and ddocent) by the Genetic Diversity Center ETH Zürich.

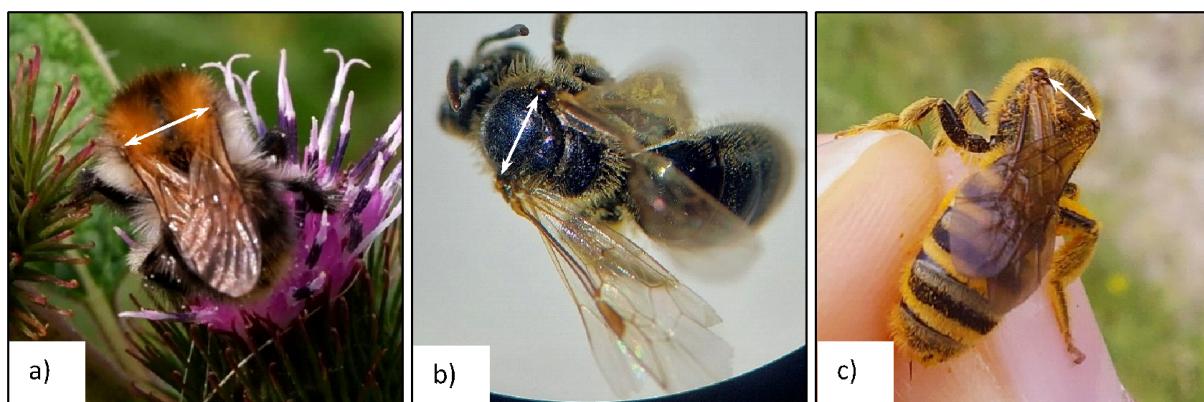
In parallel, 24 specimens of *B. pascuorum* (6 from each country, except Italy) and 24 *H. scabiosae* (all from Switzerland) were randomly selected and sequenced on an Element

AVITI platform with 300bp paired-end reads (Functional Genomics Center, Zürich, Switzerland) to generate deNovo reference catalogs for each species. Various parameters were tested during the raw sequence processing, which aimed at maximizing the re-mapping rate (as in Pedrazzini *et al.*, 2023). Optimal settings resulted in reference catalogs including ~77K RAD loci for *H. scabiosae* and ~52K for *B. pascuorum*.

Processed NovaSeq reads were then mapped to the newly created reference catalogues and quality filtered with the following criteria: minimum quality score of 30, a minor allele count of five, a minimum depth of three, a minor allele frequency of 1%, a mean depth of 10 and successfully genotyped in 50% of individuals. Additional filtering steps included the removal of loci based on allele balance, mapping quality, loci with extremely high coverage and individuals with extreme heterozygosity values. Only bi-allelic SNPs were retained and sites with more than 5% missing data were removed. Linkage disequilibrium (LD) pruning was performed using a 10 bp window. All filtering steps were conducted using bcftools v1.20 with htslib v1.20. As a final filtering step, we also detected and removed putative siblings. To do this, coefficients of relatedness between all individuals were calculated using vcftools, and for each pair with a coefficient >0.25 , the individual with the lowest read depth was removed from all downstream genetic analyses.

2.3. Analyses of genetic diversity, population structure and effective population size

Basic measures of genetic diversity (He, Ho and Fis) were calculated using the R package hierfstat (Goudet, 2005). To account for biases related to sample size differences and to facilitate later comparisons, we first standardized each site population by randomly subsampling individuals without replacement (per population: *B. pascuorum* N=10 except in 2 sites with lower sample sizes in Germany, *H. scabiosae* N = 6). Measures of nucleotide diversity (π) were calculated using vcftools and averaged in R.


Overall population structure across each species was assessed using a sparse non-negative matrix factorization (sNMF) approach from the LEA package in R (Frichot *et al.* 2014). A range of values for K (1–10) were tested to determine the optimal number of ancestral populations and cross-entropy values were computed to identify the best-supported K. In addition, a discriminant analysis by principal component (DAPC) was implemented without prior population information using the find.clusters function from the adegenet R package (Jombart, 2008), which transforms the data using principal component analysis and employs sequential K-means. Bayesian information criterion was used to assess the optimal number of clusters. A DAPC with a priori population designation was also performed to visualize genetic differentiation among populations within each country. To test for isolation by distance (IBD) among populations for each species within a country, a Mantel test was performed using the VEGAN R package with 1000 permutations between pairwise Nei's genetic distances and pairwise Euclidean geographic distance matrices. For both species, unbiased pairwise Fst values using the Weir and Cockerham (1984) method were also calculated among populations within each country.

Contemporary effective population size (Ne) for each standardized population was calculated using the linkage disequilibrium method (LDNe) based on Pearson correlation approximation (Waples *et al.*, 2016) from the stataG R package (Archer *et al.*, 2016). We report the results based on 8000 randomly selected loci without replacement (for computational efficiency), employing a 0.01 minor allele frequency threshold with no missing values. 95% Confidence intervals were generated using the jack-knife option. Since LD methods often underestimate values of Ne in haplodiploid species (Waples *et al.*, 2016), we highlight that the focus of this analysis is on the relative differences in Ne associated with intervention proportions, rather than absolute Ne measures.

Finally, linear mixed effect models (LMM) were used to compare heterozygosity, the inbreeding coefficient (F_{is}), mean π and Ne between sites with high- and low-proportions of long-term intervention areas. Sampling pair was included as a random effect factor in each model. We first modeled each species per country separately, however these models either lacked significance, had singularity issues, or showed poor model fit. Given the limited sample sizes and the need for a more robust estimation, we opted to combine data from all countries per species while including country as an interaction term, allowing us to account for potential country-specific differences while maintaining statistical power and model stability. Below we report values only from the combined, cross-country models.

2.4 Trait measurements

The inter-tegular distance, as defined in Cane (1987) (ITD; Figure 2), was measured three times for each specimen using a Euromex Stereoblue microscope and 10x/21 eyepiece (Euromex, n.d.). At the start of each measuring session, the eyepiece was calibrated using a micrometer. ITD can be used as a proxy for bee body size (Cane, 1987), and is a useful indicator of pollen carrying capacity (Warzecha *et al.*, 2016), dispersal/foraging distance (Greenleaf *et al.*) and consequently, the spatial scale at which bees can provide pollination services (Ostwald *et al.*, 2024). Additionally, the coefficient of variation (CV) was calculated for each species and landscape. CV is a dimensionless measure of intraspecific trait variation that can be calculated by dividing the standard deviation of the trait by the mean value of the trait (Lande, 1977). An overview of how many specimens were measured per country, species, and landscape type can be found in Table 1.

Figure 2: Inter-tegular distance, indicated with white arrows, for a) *Bombus pascuorum*, b) *Lasioglossum villosum*, and c) *Halictus scabiosae*.

2.5 Data analyses of trait measurements

ITD and CV were modelled using linear mixed models with the proportion of long-term interventions in the landscape (landscape type) as a categorical predictor variable. Each country and species were analysed separately. As some queens were potentially accidentally collected in Switzerland an additional categorical predictor (caste) was included in both *B. pascuorum* models (ITD and CV) to differentiate between worker and queen specimens, with queens defined as having an ITD > 4.00 mm. The model outcome of the Swiss dataset with queens removed was similar (Supplementary Information: Tables S1–2). Thus, we chose to keep queens in the final analysis to maintain a balanced sample size between landscapes. No solitary bee species was collected in the United Kingdom, so this country was excluded from those analyses. No *H. scabiosae* specimens were collected for

one high-proportion landscape in Germany, so the corresponding pair was dropped from all analyses, leaving a total of ten paired landscapes.

3. Results

3.1 Genomic data

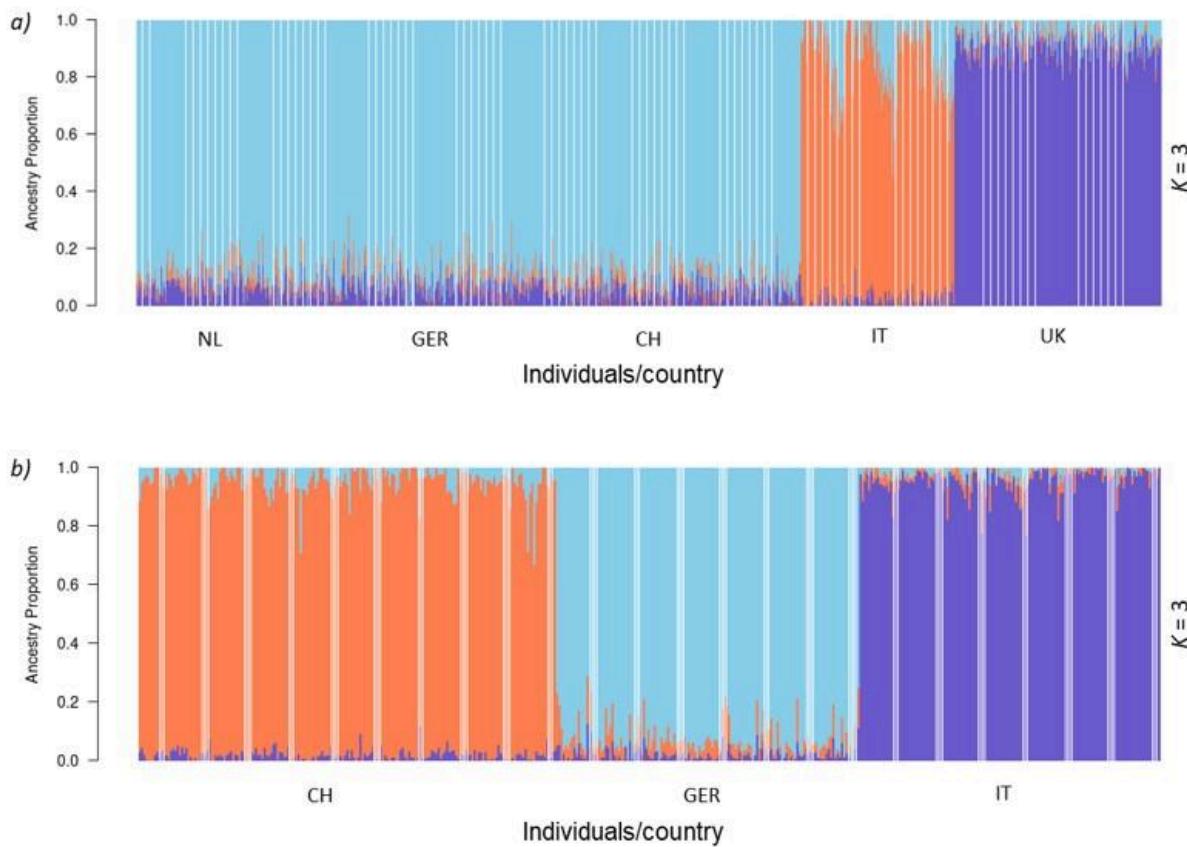
Following initial mapping and quality filtering, an average of 237,582 (range: 192,377-319,380) high quality SNPs remained among *Bombus pascuorum* individuals and an average of 197,487 (range: 177,854-213,812) remained among *Halictus scabiosae* individuals. After the subsequent filtering steps, 42,805 (range: 38,779-49,775) SNP sites were identified among 1,276 *B. pascuorum* and 37,440 (range: 28,248-46,850) among 507 *H. scabiosae*, respectively. Following the removal of putative siblings, 1,108 *B. pascuorum* and 481 *H. scabiosae* individuals remained for downstream genetic analyses.

3.2 Genetic diversity of populations

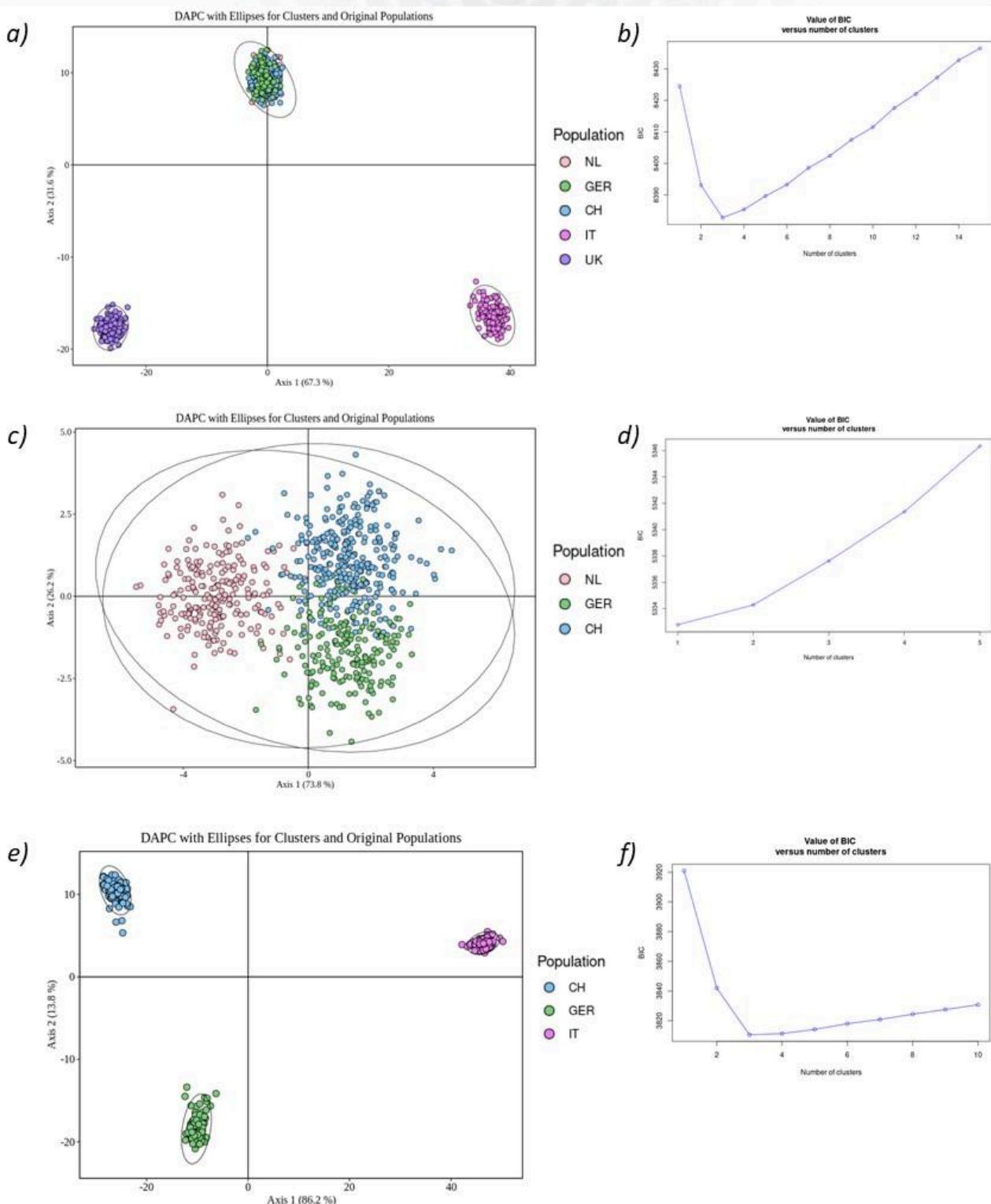
Observed heterozygosity ranged from 0.119 to 0.1877 in *B. pascuorum* and from 0.2548 to 0.3189 in *H. scabiosae* across populations. For *B. pascuorum*, values of observed and expected heterozygosity were similar in Italy and the United Kingdom, whereas observed values differed and were slightly lower than expected across populations in Germany, Netherlands and Switzerland (mean difference = -0.005, $p < 0.0001$ for each country). For *H. scabiosae*, observed and expected heterozygosity were comparable within each country. The inbreeding coefficient was low among all countries and for both species (Table 2). For both species within, and across each country, linear mixed models revealed no significant differences in H_o , H_e and F_{IS} between populations established in areas with high-proportions of long-term interventions and areas with low-proportions of long-term interventions (all p -values > 0.1 for *B. pascuorum* and p -values > 0.7 for *H. scabiosae*). Values of mean nucleotide diversity within and across countries did not differ significantly among site pairs for *B. pascuorum* (all p -values > 0.1). However, the effect of landscape type on mean π did differ significantly across countries for *H. scabiosae* ($\chi^2 = 9.71$, $p=0.0078$). Post-hoc contrasts indicated that in Switzerland, mean π was significantly larger in low-proportion compared to high-proportion landscapes ($\beta=-0.6938$, $SE = 0.191$, $t=-3.639$, $p=0.0022$). Effective population sizes ranged from 60 to 1,924 for *B. pascuorum* across all sites and from 8 to 25 in *H. scabiosae*, with no significant differences among intervention proportions (all p -value > 0.6 for *B. pascuorum* and p -value > 0.9 for *H. scabiosae*).

Table 2: Genetic diversity estimates and effective population sizes averaged per country and landscape type for standardized populations of *B. pascuorum* (N=10) and *H. scabiosae* (N=6): Expected (He) and observed heterozygosity (ho), inbreeding coefficient (Fis), effective population size (Ne) and mean nucleotide diversity (mean π).

Country	Landscape type	He	Ho	Fis	Ne	Mean π
a) <i>Bombus pascuorum</i>						
Italy	High	0.1802	0.1744	0.0238	680	0.1799
	Low	0.1822	0.1801	0.0081	579	0.1814
Germany	High	0.1272 ^a	0.1217 ^a	0.0301	1019	0.1264
	Low	0.127 ^a	0.1219 ^a	0.0281	670	0.1263
Netherlands	High	0.1273 ^a	0.122 ^a	0.0299	850	0.1262
	Low	0.1269 ^a	0.121 ^a	0.0337	655	0.1261
Switzerland	High	0.1271 ^a	0.1216 ^a	0.031	956	0.1262


	Low	0.1271 ^a	0.1216 ^a	0.0306	750	0.1261
United Kingdom	High	0.1884	0.1827	0.023	561	0.1879
	Low	0.189	0.1836	0.0217	687	0.1889
b) <i>Halictus scabiosae</i>						
Italy	High	0.2639	0.2628	-0.0055	24	0.2642
	Low	0.2633	0.2629	-0.0074	24	0.2637
Germany	High	0.3058	0.3104	-0.0229	20	0.3057
	Low	0.3062	0.3078	-0.0155	20	0.3062
Switzerland	High	0.2726	0.2743	-0.0144	22	0.272 ^b
	Low	0.2727	0.2744	-0.014	22	0.2732 ^b

^a Significantly different values per country


^b Significantly different values among landscape types

3.3 Quantifying genetic structure

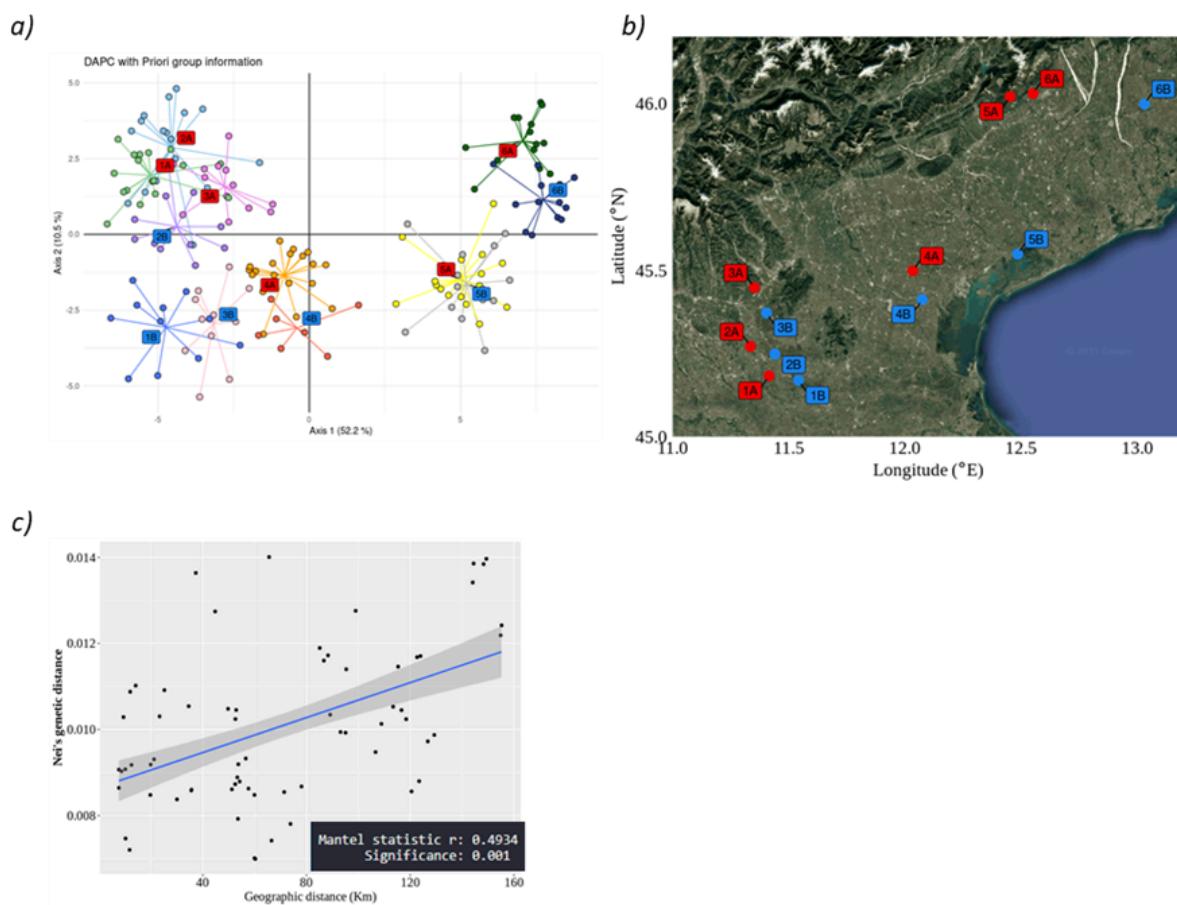

Across the full dataset, sNMF analyses revealed population structure in *B. pascuorum* for K=3, clustering populations from mainland Europe north of the Alps into one group (Germany, Netherlands and Switzerland), mainland Europe south of the Alps into another group (Italy), and those from the United Kingdom clustering into a third group (Figure 3a). sNMF also revealed clear population structure across the *H. scabiosae* dataset, suggesting an optimal K value of three and clustering the populations by countries separately (Germany, Italy and Switzerland) (Figure 3b). Within country however, sNMF analyses revealed no clear population structure, suggesting single genetic units (K=1) across each countries' study area for each of the two species (data not shown). In agreement, the find.clusters function indicated three genetic clusters based on BIC for *B. pascuorum* across all countries, again clustering populations from Germany, the Netherlands and Switzerland together, with populations from Italy and the United Kingdom clustering each into separate groups (Figure 4 a-b). A separate analysis to assess finer structure across the mainland cluster, without samples from Italy and the United Kingdom, did not reveal any further structuring (BIC value supporting 1 genetic cluster, Fst values (≥ 0.005)) (Figure 4 c-d). Three genetic clusters were also indicated by BIC among populations of *H. scabiosae*, which also clustered by separate countries (Figure 4 e-f). Within country BIC values again indicated the presence of only one genetic cluster across entire study areas for both *B. pascuorum* and *H. scabiosae* (data not shown). For both species, DAPC analyses performed with a priori group information within countries did cluster individuals into sampling populations, however slight structural patterns were only observed for *B. pascuorum* in Switzerland and in Italy, and for *H. scabiosae* in Italy (Figure 5). These results are congruent with populations that revealed levels of isolation by distance (IBD). Within countries, Mantel tests between Nei's genetic distance and geographic distance matrices showed no IBD among populations of *B. pascuorum* in the Netherlands, the United Kingdom or in Germany, but did reveal a slight yet significant positive correlation in Switzerland ($r=0.260$, $p= 0.044$) and a positive correlation in Italy ($r=0.493$, $p=0.001$). For *H. scabiosae* a significant positive correlation was also found among populations in Italy ($r=0.321$, $p=0.045$), but not in Switzerland or in Germany. Genetic differentiation among populations within each country was low in both species (*B. pascuorum* all Fst ≤ 0.01 , *H. scabiosae* all Fst ≤ 0.02).

Figure 3: Bar plots of sNMF analyses across all countries for a) *Bombus pascuorum* and b) *Halictus scabiosae*. Each individual is represented by a vertical bar, which is partitioned into K colored segments showing the individual's probability of belonging to the cluster with that color.

Figure 4: Discriminant Analyses of Principal Components without a priori group assignment across all countries for a) *Bombus pascuorum* and e) *Halictus scabiosae* and c) *Bombus pascuorum* across mainland countries only. Bayesian information criterion plots indicate the optimal number of clusters as three across b) *Bombus pascuorum* and d) *Halictus scabiosae* and an optimal number of one across d) *Bombus pascuorum* mainland sites. NL = Netherlands, GER = Germany, CH = Switzerland, IT = Italy, UK = United Kingdom.

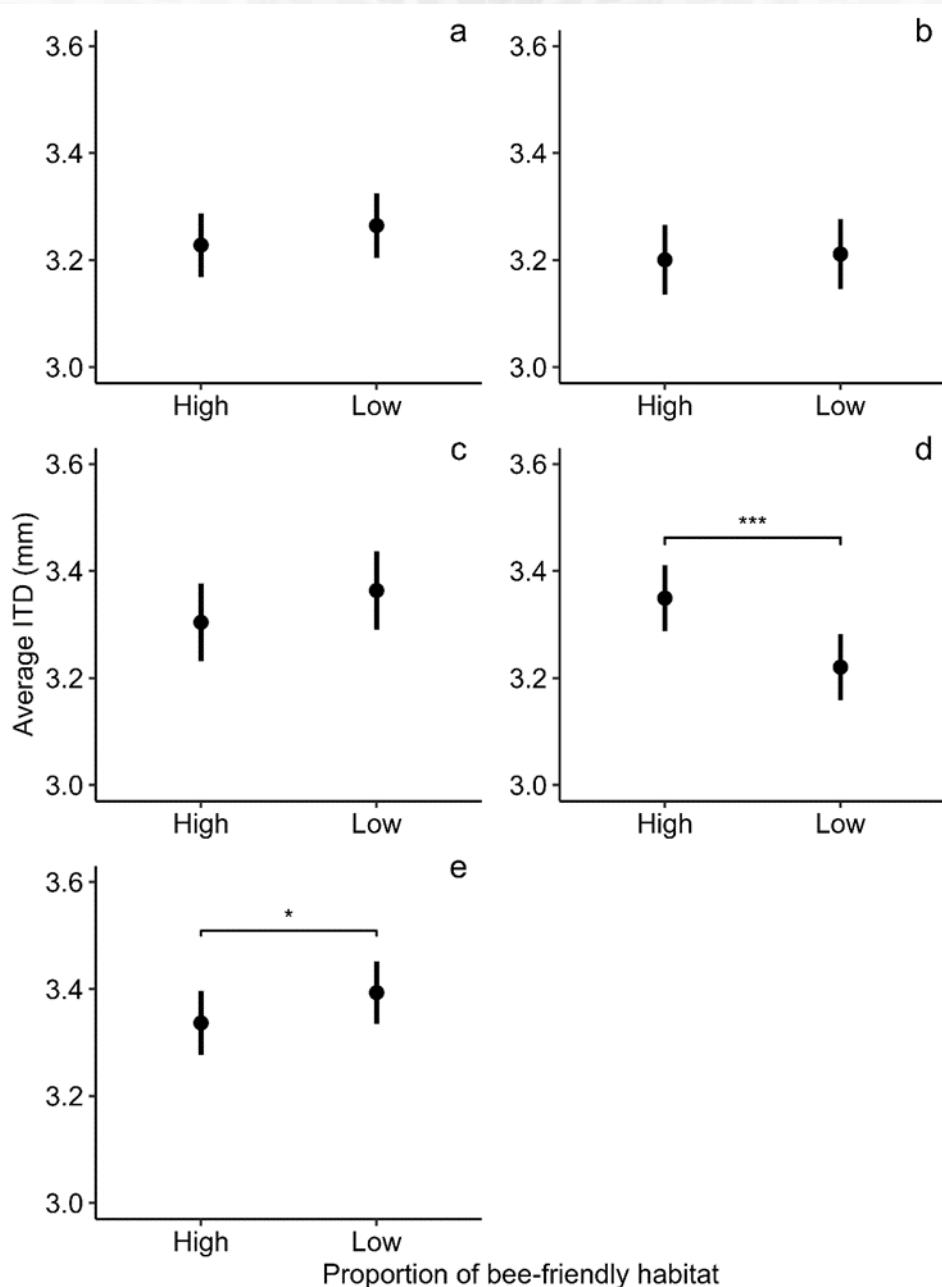


Figure 5: Example of within country population structure in *Bombus pascuorum* in Italy a) Discriminant Analyses of Principal Components with a priori group assignment showing slight structure along Axis 1, associated with geographic distance. b) Sampling sites in Italy. Red labels indicate sites with high-proportions of long-term interventions and blue labels indicate sites with low-proportions of long-term interventions. c) Pairwise genetic distance by pairwise geographic distance indicating isolation by distance with Mantel statistics.

3.4 Landscape-level habitat influence on body size

Bombus pascuorum

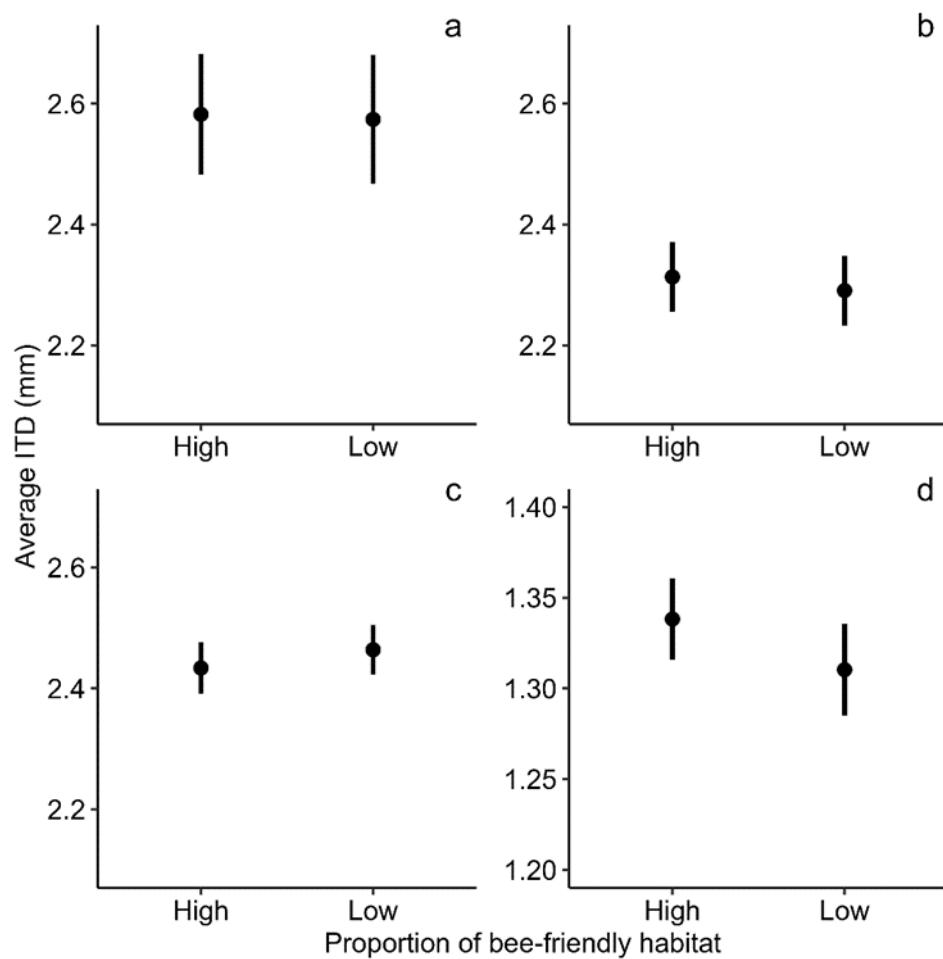

ITD differed significantly between landscape types in the United Kingdom ($\chi^2(1) = 15.373$, $p < 0.001$) and Switzerland ($\chi^2(1) = 5.22$, $p = 0.022$) (Figure 6d–e). We found no difference in *B. pascuorum* ITD between high- and low-proportion landscape types in the Netherlands ($\chi^2(1) = 3.058$, $p = 0.08$), Germany ($\chi^2(1) = 1.051$, $p = 0.305$) or Italy ($\chi^2(1) = 0.106$, $p = 0.745$) (Figure 6a–c). Average ITD was significantly higher in high-proportion landscapes in the United Kingdom ($\beta = 0.129$, $SE = 0.032$, $z = 3.98$, $p < 0.001$), and significantly lower in Switzerland ($\beta = -0.057$, $SE = 0.025$, $z = -2.29$, $p = 0.022$).

Figure 6: Estimated marginal means of inter-tegular distance (ITD, mm) of *Bombus pascuorum* by landscape type. Panels are split by country: a = Germany, b = Italy, c = the Netherlands, d = United Kingdom, and e = Switzerland. Bars and asterisks indicate significant differences between the two landscape types. $< 0.05 = *$, $< 0.01 = **$, $< 0.001 = *$.**

Halictus scabiosae & Lasioglossum villosum

We found no difference in average ITD between high- and low-proportion landscapes in Germany ($\chi^2(1) = 0.05$, $p = 0.824$), Italy ($\chi^2(1) = 0.958$, $p = 0.328$), Switzerland ($\chi^2(1) = 1.468$, $p = 0.226$) or the Netherlands ($\chi^2(1) = 2.624$, $p = 0.105$) (Figure 7a-d).

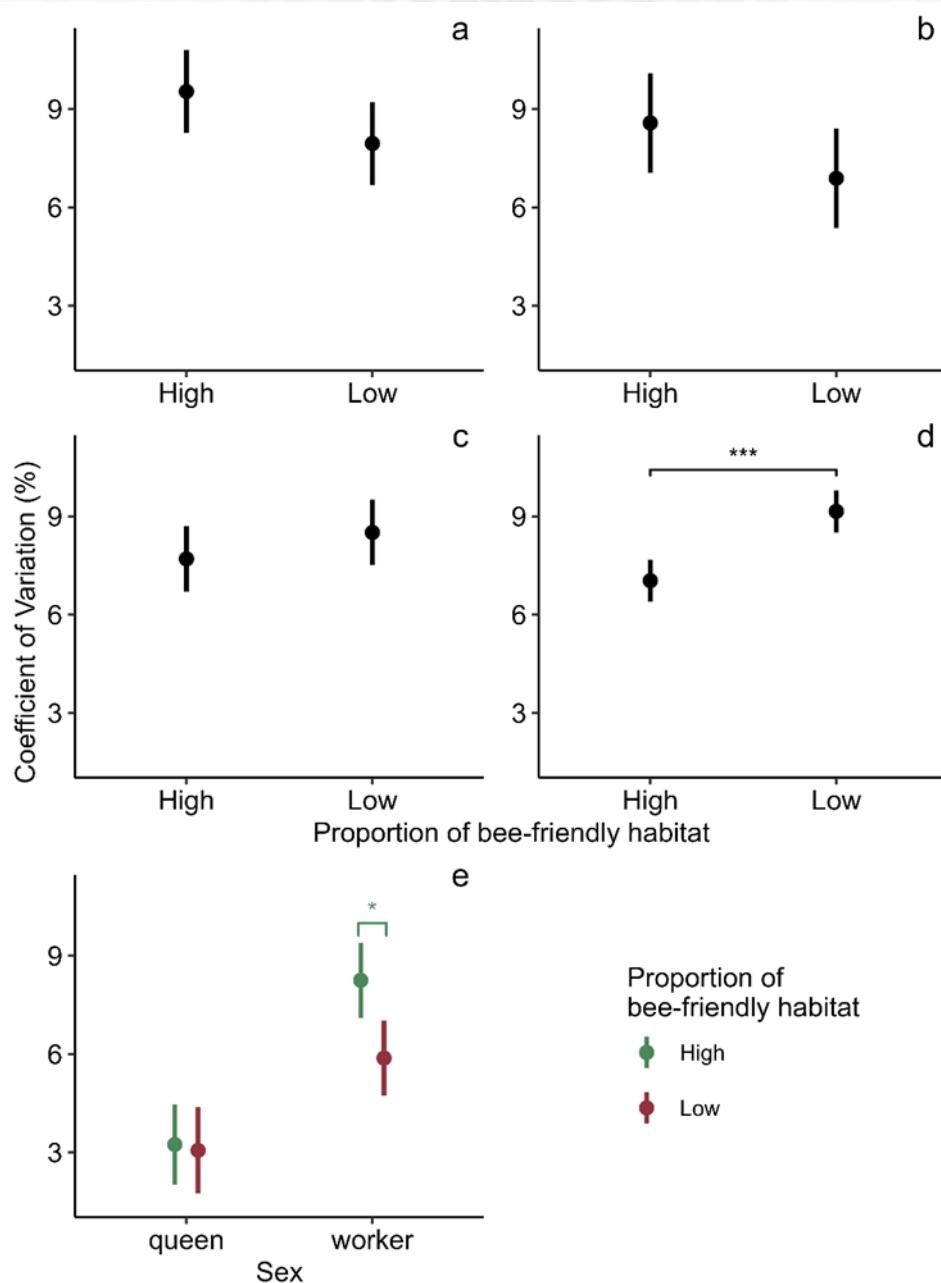


Figure 7: Estimated marginal means of inter-tegular distance (ITD, mm) of solitary bee species by landscape type. Panels are split by country: a = Germany, b = Italy, c = Switzerland, d = the Netherlands. *Halictus scabiosae* was the study species in Germany, Italy and Switzerland. *Lasioglossum villosum* was the study species in the Netherlands.

3.5 Landscape-level habitat influence on intraspecific trait variation

Bombus pascuorum

CV differed significantly by landscape type in the United Kingdom ($\chi^2(1) = 13.796$, $p < 0.001$) (Figure 8d). In Switzerland, there was a significant interaction between caste and landscape type ($\chi^2(1) = 3.96$, $p = 0.047$) (Figure 8e). We found no difference in *B. pascuorum* ITD between high- and low-proportion landscape types in the Netherlands ($\chi^2(1) = 1.178$, $p = 0.276$), Germany ($\chi^2(1) = 2.833$, $p = 0.092$) or Italy ($\chi^2(1) = 2.941$, $p = 0.0864$) (Figure 8a–c). Average CV was significantly lower in high-proportion landscapes in the United Kingdom ($\beta = -2.115$, $SE = 0.369$, $z = -5.727$, $p < 0.001$). In Switzerland, CV was only significantly higher in high-proportion landscapes for the worker caste ($\beta = 2.38$, $SE = 0.702$, $t = 3.383$, $p = 0.013$)

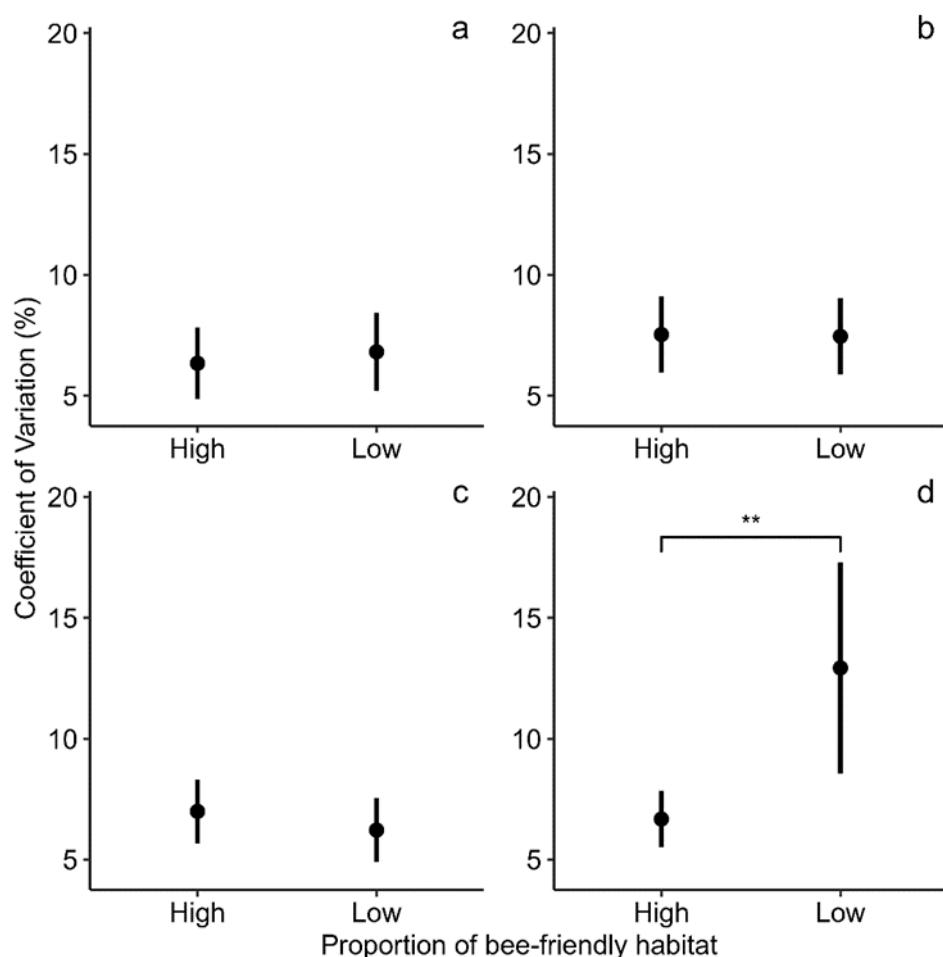


Figure 8: Estimated marginal means of the coefficient of variation (CV, %) of *Bombus pascuorum* by landscape type. Panels are split by country: a = Germany, b = Italy, c = the Netherlands, d = United Kingdom, e = Switzerland. Swiss *Bombus pascuorum* specimens (panel e) were split into two categories (queens, workers). Bars and asterisks indicate significant differences between the two landscape types. $< 0.05 = ^*$, $< 0.01 = ^{}$, $< 0.001 = ^{***}$.**

Halictus scabiosae & Lasioglossum villosum

CV was significantly different between high- and low-proportion landscapes in the Netherlands ($\chi^2(1) = 4.93$, $p = 0.026$) (Figure 8d). We found no difference in CV between landscape types in Germany ($\chi^2(1) = 0.176$, $p = 0.675$), Italy ($\chi^2(1) = 0.005$, $p = 0.947$), or Switzerland ($\chi^2(1) = 0.648$, $p = 0.421$) (Figure 9a-c). In the Netherlands, CV was

significantly lower in high-proportion landscapes ($\beta = -1.316$, $SE = 0.408$, $z = -3.224$, $p = 0.00126$).

Figure 9: Estimated marginal means of the coefficient of variation (CV, %) of solitary bee species by landscape type. Panels are split by country: a = Germany, b = Italy, c = Switzerland, d = the Netherlands. *Halictus scabiosae* was the study species in Germany, Italy and Switzerland. *LasioGLOSSUM villosum* was the study species in the Netherlands. Bars and asterisks indicate significant differences between the two landscape types. $< 0.05 = *$, $< 0.01 = **$, $< 0.001 = *$.**

4. Discussion

Across the study range, our results support the presence of three genetic clusters in *Bombus pascuorum*, with a mostly panmictic cluster across mainland Europe north of the alps, and limited gene flow across both the Alps and the English Channel. In contrast, populations of *Halictus scabiosae* clustered into distinct groups at smaller geographic scales, with separate groups in Italy, Germany and Switzerland. Within each county however, populations of both species exhibited little genetic structure, clustering into single genetic units. Further, we found little to no genetic differences among areas with contrasting amounts of long-term interventions, suggesting that local land-use types do not act as barriers to gene flow for these mobile species at this scale. Additionally, we found no differences in the mean body size and ITV of *H. scabiosae* between landscapes with low- and high- proportions of

long-term interventions, or of *B. pascuorum* in Italy, Germany, and the Netherlands. In Switzerland and the United Kingdom, we found diverging responses in the body size of *B. pascuorum* to the proportion of long-term interventions in the landscape, suggesting that multiple factors might influence whether populations of *B. pascuorum* invest in more, smaller-bodied workers versus fewer, larger-bodied workers. These differences in body size, despite the lack of population structure, suggest potential phenotypic plasticity as a response to local landscapes. In the Netherlands, *L. villosum* body size was not different between landscape types, however ITV was significantly higher in low-proportion landscapes, and is potentially an adaptive response to limited or patchy floral resources.

4.1 Genetic diversity

Among the different sampling regions, observed heterozygosity (H_o) in *B. pascuorum* was comparable to expected heterozygosity (H_e) in Italy and the United Kingdom. However, in Germany, Netherlands and Switzerland, H_o was slightly but significantly lower than H_e . While this could indicate potential bottleneck or drift events, the relatively small difference (-0.005), the overall low F_{is} values, and the lack of population structure provide little evidence for declining genetic diversity. Further, these genetic diversity estimates are comparable to those found in other common bumblebee species assessed using ddRADseq methods, whereas restricted or declining populations typically resulted in lower estimates (Jackson *et al.*, 2018; Huml *et al.*, 2021). In *H. scabiosae*, estimates of H_o and H_e were similar across the study range, suggesting relatively stable genetic diversity. At the local scale, we found no differences in heterozygosity, inbreeding or effective population sizes in either species among sites with contrasting proportions of long-term interventions. This suggests that, at these scales, land-use types do not significantly hinder the dispersal of either *B. pascuorum* or *H. scabiosae*. Rather, it is likely that the study regions contain sufficient high-quality habitats to maintain connectivity and to allow for gene flow among populations. In *H. scabiosae* in Switzerland, nucleotide diversity was slightly higher in sites with low-proportions of intervention types than in those with high-proportions. This may be the result of recent range expansions of *H. scabiosae*, as recently described by Gil-Tapetado *et al.* (2024) in Switzerland and across Europe, greatly extending its choice of habitats. When considering the generally low levels of inbreeding and lack of barriers to gene flow, another possible explanation is that multiple surrounding populations are spilling over into these low intervention areas, subsequently contributing to increased genetic mixing. While these results indicate that genetic variation in *B. pascuorum* and *H. scabiosae* has not, or possibly not yet, been largely influenced by local interventions, we cannot exclude that such impacts may need more time to appear.

4.2 Genetic differentiation

Cross country sNMF and DAPC analyses indicate three distinct clusters of *B. pascuorum*, with populations across mainland Europe north of the Alps forming one group (despite many sites being separated by >500km), while populations in the United Kingdom and Italy cluster into two separate groups (Figures 3a and 4a-b). These separations may be the result of long-term isolation following historical events, such as different post glacial refugia. Within countries, we found a lack of marked differentiation among high- and low- intervention proportions, with each sampling site clustering into single genetic units. Differentiation in this species appears to be driven by natural barriers, in this case with limited gene flow across the Alps and the English Channel- consistent with findings by Widmer *et al.* (1999), who previously described two genetic clusters in continental Europe. Such panmictic structure could be explained by the relatively high dispersal abilities of *B. pascuorum* queens, which range from 3-5km (Lepais *et al.*, 2010), as well as the species' relatively high population densities (Dreier *et al.*, 2014). Slight isolation-by-distance (IBD) effects were detected in Switzerland and Italy. However, considering the generally low F_{st} values, there is little

evidence for differentiation across these sampling regions. One possible explanation is that *B. pascuorum* has been found to forage more locally (Chapman *et al.*, 2003). While they are capable of dispersing over longer ranges, should sufficient local resources be available, they may not need to expend energy flying further. Additionally, if suitable habitats are spread across the sampling range, sequential gene flow between neighboring sites could explain the lack of differentiation across the region. *H. scabiosae* also clustered into three groups across the study region. However, unlike *B. pascuorum*, mainland populations were clustered into separate groups. This is in line with likely shorter dispersal ranges often associated with smaller body sizes, compared to the larger *B. pascuorum* (Greenleaf *et al.*, 2007). Locally, however, *H. scabiosae* was similarly characterized by single clusters and a lack of genetic differentiation, indicating gene flow across local landscapes. In Italy, the IBD effects detected for *H. scabiosae* appear to be associated with geographic distance rather than to proportion of interventions, given the low Fst values across sites. *H. scabiosae* have been shown to disperse up to 4.5km (Ulrich *et al.*, 2009), suggesting that, if necessary, individuals could travel to other suitable habitats. However, the patterns observed here suggest that local resources in Italy are likely sufficient, reducing the need for long-range dispersals.

4.3 Functional traits

The advantages and trade-offs associated with body size can be wide-ranging in both primitively eusocial (*B. pascuorum* and *H. scabiosae*) (Packer & Richards, 2021; Rubenstein & Abbot, 2017) and solitary species (*L. villosum*) (Plateaux-Quénou *et al.*, 1989). In bumblebees, larger workers have been found to be more efficient foragers (Spaethe & Weidenmüller, 2002) and are better at providing for brood (Cnaani & Hefetz, 1994), while smaller workers are more resilient to starvation (Couvillon & Dornhaus, 2010), and having more, smaller workers is a form of insurance against the loss of workers due to predation or disease (Chole *et al.*, 2019). Higher within-colony variation also allows a colony to exploit a wider range of floral resources (Peat *et al.*, 2005). In solitary species, larger females have been found to carry much larger pollen loads and thus can provision larger or more brood cells (Renauld *et al.*, 2016), but smaller females have lower food requirements and thus are less limited by floral resource availability.

We expected to see differences in body size and the coefficient of variation between landscape types, under the assumption that in more fragmented and lower quality habitat, there would be more pressure for reproductive females to adjust brood provisioning according to floral resource availability. What we found was largely the opposite: *B. pascuorum* body size and CV differed between habitat types in Switzerland and the United Kingdom, but not in any other country. There was no difference in body size or CV of *H. scabiosae* in any country, and only a difference in CV in *L. villosum* in the Netherlands. *B. pascuorum* is already a relatively large-bodied bee species whose foraging range may be sufficiently large to overcome the lesser quality of low-proportion landscapes in Italy, Germany, and the Netherlands (Greenleaf *et al.*, 2007, Redhead *et al.*, 2016). It is also possible that other habitats, such as private gardens and green infrastructure, were supplementing the floral resources available to *B. pascuorum*, *H. scabiosae*, and *L. villosum*, all of which are polylectic species. In the Netherlands, *B. pascuorum* was regularly seen and caught on flowering lavender (*Lavandula* sp.) inside private gardens, and *L. villosum* was largely caught on road verges. Though the landscapes in all countries were selected so that urban area was similar between paired sites, it is possible that there were sufficient floral resources in gardens and green infrastructure to mitigate the negative effects of an otherwise resource-poor landscape, acting, in essence, like a habitat enhancement (Grab *et al.*, 2019; Phillips *et al.*, 2020; Samnegård *et al.*, 2011).

We found contrasting patterns in Switzerland and the United Kingdom. In Switzerland, the body size of *B. pascuorum* was larger in low-proportion landscapes, where it might be favourable to invest in larger-bodied workers as it increases flight distance and thus their ability to forage in a fragmented landscape (Gérard *et al.*, 2020; Greenleaf *et al.*, 2007). In the United Kingdom, we found the opposite response, where *B. pascuorum* workers were larger in high-proportion landscapes. Here, it may have been more beneficial to invest in more, smaller-bodied workers who require fewer resources to produce and maintain and thus can make better use of limited floral resources (Chole *et al.*, 2019; McNab, 2010). Bumblebee colonies also favour producing larger workers, which are more costly to produce, when resources are abundant (Kerr *et al.*, 2019; Malfi *et al.*, 2019), which may be the case in the high-proportion landscapes in the United Kingdom. Bumblebees have been shown to have diverging responses to land use change: in the Netherlands, large-bodied bees shrank over time, likely in response to a worsening of habitat conditions (Oliveira *et al.*, 2016); conversely, in Belgium, bumblebee queen body sizes increased over the last century, possibly as a result of agricultural intensification and habitat fragmentation (Gérard *et al.*, 2020). In general, either response to a decline in habitat quality (more, smaller vs. fewer, larger workers) can be adaptive in bumblebees, though the reason why one response might occur over the other is not yet well understood (Kerr *et al.*, 2021). Habitat fragmentation may favour larger workers (such as in Switzerland), as increased mobility compensates for patchy resources, whereas limited floral resources in the landscape may favour smaller workers (such as in the United Kingdom), as they require fewer resources to produce (Kerr *et al.*, 2019). In Switzerland, CV was higher in the high-proportion landscape compared to the low-proportion landscape. Higher CV in worker size could enable better resource utilization in species-rich environments (Vaudo *et al.*, 2015), which is potentially the case for high-proportion landscapes, where semi-natural habitat is present in larger amounts and is therefore less likely to be fragmented (Lindgren & Cousins, 2017). In the United Kingdom, CV was higher in the low-proportion landscape, which may be an adaptive response that allows for broader resource use, and thus survivability in a degraded environment (Peralta *et al.*, 2024).

Other studies investigating the effect of land use change on solitary bee species have found that bee body size decreased along a gradient of agricultural land (Grab *et al.*, 2019; Renauld *et al.*, 2016). However, we found minimal variation in body size and CV between landscape types in *H. scabiosae*. The exception was *L. villosum*, sampled in the Netherlands, where CV was significantly higher in low-proportion landscapes. A higher CV in low-quality landscapes may indicate an increase in phenotypic plasticity, as greater variation in body size allows for broader resource use, potentially enhancing survival in degraded environments (Peralta *et al.*, 2024). *L. villosum* is also, compared to *H. scabiosae*, a particularly small-bodied species (*H. scabiosae*: mean ITD = 2.41 mm, SD = 0.22; *L. villosum*: mean ITD = 1.33 mm, SD = 0.14). They may be more sensitive to resource scarcity due to their small foraging range (Gathmann & Tscharntke, 2002; Greenleaf *et al.*, 2007) and thus require greater flexibility in their foraging strategies in low-quality environments compared to *H. scabiosae*. Further, floral resources may be more discontinuous in the low-proportion landscapes, which contain a higher proportion of non-mass-flowering crops (Hemberger *et al.*, 2023). Such inconsistent resource availability may increase body size variation in offspring, and subsequently CV (Peralta *et al.*, 2024). *H. scabiosae* may be buffered against the negative effects of habitat fragmentation, as they likely have a larger foraging distance due to their larger body size (Greenleaf *et al.*, 2007). *H. scabiosae* has also been shown to be well-adapted to urban environments, and thus may rely less on floral resources in agricultural and semi-natural habitats (Gil-Tapetado *et al.*, 2024). Further, *H. scabiosae* is a primitively eusocial species wherein queens can influence the body size of their first brood by restricting food provisions, producing worker females that help raise the second brood rather than reproducing themselves (Brand & Chapuisat, 2012). Similar to bumblebees, primitively eusocial bee species may be less affected by habitat

fragmentation or degradation as the queen can rely on workers to provision the next brood (Packer & Richards, 2021).

4.4 Conclusion

Together, our results support high genetic connectivity between populations established in areas with low and high proportions of long-term interventions. This suggests that current interventions and habitat resources are sufficiently well distributed across regions to support the maintenance of *Bombus pascuorum* and *Halictus scabiosae* populations, or that both species are already well-adapted to agricultural landscapes, and thus do not respond strongly to lower proportions of long-term interventions. However, Switzerland and the United Kingdom were exceptions, where we found divergent responses in both body size and ITV in *B. pascuorum*, indicating that further research is needed to determine which factors are playing a role in the selection for either small-bodied or large-bodied workers. However, given the high gene flow and lack of within-country population structure, we believe that body size differences are likely the result of phenotypic plasticity, rather than local adaptation (Austin *et al.*, 2022).

Given the scale of the landscapes involved in this study, we could not quantify landscape-wide floral resources beyond the percent area of semi-natural habitat. While we ensured large contrasts between low- and high-proportion landscapes, we recommend directly testing resource allocation strategies in bumblebee colonies under different environmental conditions (e.g., increased habitat fragmentation, decreased habitat area, decreased flower diversity) to better understand what factors might drive a colony to invest in fewer, larger-bodied workers versus more, smaller-bodied workers. We also suggest that any future studies at the landscape-level attempt to quantify habitat fragmentation and floral resource availability (including urban habitat, such as gardens and green infrastructure) within the landscape despite the effort involved, as it could shed light on the degree to which floral resource limitation and/or habitat fragmentation are influencing bee body size and intraspecific trait variation.

Since taxonomic groups can vary greatly in their levels of genetic diversity, further studies should be conducted across a broader range of species, both common and rare, to ensure that interventions effectively support and promote diverse communities. Studies such as these are not only important first steps in generating baseline knowledge of current genetic states, they are also critical for future monitoring schemes. By comparing later genetic diversity measures, monitoring efforts will be better equipped to assess and quickly detect potential population declines. This is particularly important since it has been shown that sometimes seemingly common species can be in decline, as census sizes are often larger than effective population sizes (Huml *et al.*, 2023).

5. Acknowledgements

We would like to thank Peter Unglaub, Femke van Beersum and Mads Nielsen for their assistance in the field, as well as all data contributors and lab personnel for their contributions to this study.

6. References

Albrecht, M., Duelli, P., Müller, C., Kleijn, D., & Schmid, B. (2007). The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. *Journal of Applied Ecology*, 44(4), 813–822. <https://doi.org/10.1111/j.1365-2664.2007.01306.x>

Anderson, S. E., Hahn, P., Gonzalez, G., & Mallinger, R. E. (2024). Land-use change alters specialist bee diet and drives body size declines. *Landscape Ecology*, 39(6), 115. <https://doi.org/10.1007/s10980-024-01893-1>

Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. *Nature Reviews Genetics*, 17(2), 81–92. <https://doi.org/10.1038/nrg.2015.28>

Archer, F. I., Adams, P. E., & Schneiders, B. B. (2017). stratag: An r package for manipulating, summarizing and analysing population genetic data. *Molecular Ecology Resources*, 17(1), 5–11. <https://doi.org/10.1111/1755-0998.12559>

Austin, M. W., & Dunlap, A. S. (2019). Intraspecific Variation in Worker Body Size Makes North American Bumble Bees (*Bombus* spp.) Less Susceptible to Decline. *The American Naturalist*, 194(3), 381–394. <https://doi.org/10.1086/704280>

Austin, M. W., Tripodi, A. D., Strange, J. P., & Dunlap, A. S. (2022a). Bumble bees exhibit body size clines across an urban gradient despite low genetic differentiation. *Scientific Reports*, 12(1), 4166. <https://doi.org/10.1038/s41598-022-08093-4>

Badiane, A., Ropars, L., Flacher, F., Schurr, L., Zakardjian, M., Affre, L., Deschamps-Cottin, M., Gachet, S., Robles, C., & Geslin, B. (2024). Urbanisation impacts the diversity, coloration, and body size of wild bees in a Mediterranean city. *Regional Environmental Change*, 24(2), 41. <https://doi.org/10.1007/s10113-024-02199-3>

Banaszak-Cibicka, W., Fliszkiewicz, M., Langowska, A., & Źmihorski, M. (2018). Body size and wing asymmetry in bees along an urbanization gradient. *Apidologie*, 49(3), 297–306. <https://doi.org/10.1007/s13592-017-0554-y>

Bartomeus, I., Ascher, J. S., Gibbs, J., Danforth, B. N., Wagner, D. L., Hettke, S. M., & Winfree, R. (2013). Historical changes in northeastern US bee pollinators related to shared ecological traits. *Proceedings of the National Academy of Sciences*, 110(12), 4656–4660. <https://doi.org/10.1073/pnas.1218503110>

Batáry, P., Dicks, L. V., Kleijn, D., & Sutherland, W. J. (2015). The role of agri-environment schemes in conservation and environmental management. *Conservation Biology*, 29(4), 1006–1016. <https://doi.org/10.1111/cobi.12536>

Boetzl, F. A., Krauss, J., Heinze, J., Hoffmann, H., Juffa, J., König, S., Krimmer, E., Prante, M., Martin, E. A., Holzschuh, A., & Steffan-Dewenter, I. (n.d.). *A multitaxa assessment of the effectiveness of agri-environmental schemes for biodiversity management*. <https://doi.org/10.1073/pnas.2016038118/-DCSupplemental>

Brand, N., & Chapuisat, M. (2012). Born to be bee, fed to be worker? The caste system of a primitively eusocial insect. *Frontiers in Zoology*, 9(1), 35. <https://doi.org/10.1186/1742-9994-9-35>

Brasil, S. N. R., George, M., & Rehan, S. M. (2024). Functional traits of wild bees in response to urbanization. *Journal of Insect Conservation*, 28(1), 127–139. <https://doi.org/10.1007/s10841-023-00528-1>

Burkle, L. A., Simanonok, M. P., Durney, J. S., Myers, J. A., & Belote, R. T. (2019). Wildfires Influence Abundance, Diversity, and Intraspecific and Interspecific Trait Variation of Native Bees and Flowering Plants Across Burned and Unburned Landscapes. *Frontiers in Ecology and Evolution*, 7. <https://doi.org/10.3389/fevo.2019.00252>

Cane, J. (1987). Estimation of bee size using intertegular span (Apoidea). *J.Kansas Entomol.Soc.*, 60, 145–147

Chapman, R. E., Wang, J., & Bourke, A. F. G. (2003). Genetic analysis of spatial foraging patterns and resource sharing in bumble bee pollinators. *Molecular Ecology*, 12(10), 2801–2808. <https://doi.org/10.1046/j.1365-294X.2003.01957.x>

Chole, H., Woodard, S. H., & Bloch, G. (2019). Body size variation in bees: regulation, mechanisms, and relationship to social organization. *Current Opinion in Insect Science*, 35, 77–87. <https://doi.org/10.1016/j.cois.2019.07.006>

Classen, A., Steffan-Dewenter, I., Kindeketa, W. J., & Peters, M. K. (2017). Integrating intraspecific variation in community ecology unifies theories on body size shifts along climatic gradients. *Functional Ecology*, 31(3), 768–777. <https://doi.org/10.1111/1365-2435.12786>

Cnaani, J., & Hefetz, A. (1994). The effect of workers size frequency distribution on colony development in *Bombus terrestris*. *Insectes Sociaux*, 41(3), 301–307. <https://doi.org/10.1007/BF01242301>

Cohen, H., Egerer, M., Thomas, S.-S., & Philpott, S. M. (2022). Local and landscape features constrain the trait and taxonomic diversity of urban bees. *Landscape Ecology*, 37(2), 583–599. <https://doi.org/10.1007/s10980-021-01370-z>

Couvillon, M. J., & Dornhaus, A. (2010). Small worker bumble bees (*Bombus impatiens*) are harder against starvation than their larger sisters. *Insectes Sociaux*, 57(2), 193–197. <https://doi.org/10.1007/s00040-010-0064-7>

Crispo, E. (2008). Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. *Journal of Evolutionary Biology*, 21(6), 1460–1469. <https://doi.org/10.1111/j.1420-9101.2008.01592.x>

Dellicour, S., Gerard, M., Prunier, J. G., Dewulf, A., Kuhlmann, M., & Michez, D. (2017). Distribution and predictors of wing shape and size variability in three sister species of solitary bees. *PLOS ONE*, 12(3), e0173109. <https://doi.org/10.1371/journal.pone.0173109>

Dreier, S., Redhead, J. W., Warren, I. A., Bourke, A. F. G., Heard, M. S., Jordan, W. C., Sumner, S., Wang, J., & Carvell, C. (2014). Fine-scale spatial genetic structure of common and declining bumble bees across an agricultural landscape. *Molecular Ecology*, 23(14), 3384–3395. <https://doi.org/10.1111/mec.12823>

Elzay, S. D., & Baum, K. A. (2021). Landscape characteristics predict body sizes in wild bees: implications for pollination services and foraging range. *Journal of Insect Conservation*, 25(2), 243–253. <https://doi.org/10.1007/s10841-021-00294-y>

Fitzgerald, J. L., Ogilvie, J. E., & CaraDonna, P. J. (2022). Ecological Drivers and Consequences of Bumble Bee Body Size Variation. *Environmental Entomology*, 51(6), 1055–1068. <https://doi.org/10.1093/ee/nvac093>

Franco, A. L., Carvalho, R. L., Andresen, E., Mora, F., Vasconcelos, H. L., & Korasaki, V. (2023). Dung beetle morphological traits show intraspecific differences among four land uses in the Cerrado biome. *Journal of Insect Conservation*, 27(1), 97–106. <https://doi.org/10.1007/s10841-022-00452-w>

Frankham, R. (2005). Genetics and extinction. *Biological Conservation*, 126(2), 131–140. <https://doi.org/10.1016/j.biocon.2005.05.002>

Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O. (2014). Fast and efficient estimation of individual ancestry coefficients. *Genetics*, 196(4), 973–983. <https://doi.org/10.1534/genetics.113.160572>

Garlin, J., Theodorou, P., Kathe, E., Quezada-Euán, J. J. G., Paxton, R. J., & Soro, A. (2022). Anthropogenic effects on the body size of two neotropical orchid bees. *BMC Ecology and Evolution*, 22(1), 94. <https://doi.org/10.1186/s12862-022-02048-z>

Gathmann, A., & Tscharntke, T. (2002). Foraging ranges of solitary bees. *Journal of Animal Ecology*, 71(5), 757–764. <https://doi.org/10.1046/j.1365-2656.2002.00641.x>

Gaudard, C. A., Robertson, M. P., & Bishop, T. R. (2019). Low levels of intraspecific trait variation in a keystone invertebrate group. *Oecologia*, 190(4), 725–735. <https://doi.org/10.1007/s00442-019-04426-9>

Gavini, S. S., Quintero, C., & Tadey, M. (2020). Intraspecific variation in body size of bumblebee workers influences anti-predator behaviour. *Journal of Animal Ecology*, 89(2), 658–669. <https://doi.org/10.1111/1365-2656.13135>

Gérard, M., Martinet, B., Maebe, K., Marshall, L., Smagghe, G., Vereecken, N. J., Vray, S., Rasmont, P., & Michez, D. (2020). Shift in size of bumblebee queens over the last century. *Global Change Biology*, 26(3), 1185–1195. <https://doi.org/10.1111/gcb.14890>

Gil-Tapetado, D., Ferrari, A., Ronchetti, F., & Polidori, C. (2024). Distribution widening of a ground-nesting social bee across Europe favored by climate change and urban setting. *Apidologie*, 55(3), 1–20. <https://doi.org/10.1007/s13592-024-01077-5>

Goudet, J. (2005). hierfstat, a package for r to compute and test hierarchical F-statistics. *Molecular Ecology Notes*, 5(1), 184–186. <https://doi.org/10.1111/j.1471-8286.2004.00828.x>

Grab, H., Brokaw, J., Anderson, E., Gedlinske, L., Gibbs, J., Wilson, J., Loeb, G., Isaacs, R., & Poveda, K. (2019). Habitat enhancements rescue bee body size from the negative effects of landscape simplification. *Journal of Applied Ecology*, 56(9), 2144–2154. <https://doi.org/10.1111/1365-2664.13456>

Grass, I., Albrecht, J., Farwig, N., & Jauker, F. (2021). Plant traits and landscape simplification drive intraspecific trait diversity of *Bombus terrestris* in wildflower plantings. *Basic and Applied Ecology*, 57, 91–101. <https://doi.org/10.1016/j.baae.2021.10.002>

Greenleaf, S. S., Williams, N. M., Winfree, R., & Kremen, C. (2007a). Bee foraging ranges and their relationship to body size. *Oecologia*, 153(3), 589–596. <https://doi.org/10.1007/s00442-007-0752-9>

Hemberger, J., Bernauer, O. M., Gaines-Day, H. R., & Gratton, C. (2023). Landscape-scale floral resource discontinuity decreases bumble bee occurrence and alters community composition. *Ecological Applications*, 33(7), e2907. <https://doi.org/10.1002/eap.2907>

Henn, J. J., Buzzard, V., Enquist, B. J., Halbritter, A. H., Klanderud, K., Maitner, B. S., Michaletz, S. T., Pötsch, C., Seltzer, L., Telford, R. J., Yang, Y., Zhang, L., & Vandvik, V. (2018). Intraspecific Trait Variation and Phenotypic Plasticity Mediate Alpine Plant Species Response to Climate Change. *Frontiers in Plant Science*, 9. <https://doi.org/10.3389/fpls.2018.01548>

Huml, J. V., Ellis, J. S., Lloyd, K., Benefer, C. M., Kiernan, M., Brown, M. J. F., & Knight, M. E. (2021). Bucking the trend of pollinator decline: the population genetics of a range expanding bumblebee. *Evolutionary Ecology*, 35(3), 413–442. <https://doi.org/10.1007/s10682-021-10111-2>

Huml, J. V., Ellis, J. S., Rustage, S., Brown, M. J. F., Billington, R., & Knight, M. E. (2023). The tragedy of the common? A comparative population genomic study of two bumblebee species. *Insect Conservation and Diversity*, 16(3), 335–354. <https://doi.org/10.1111/icad.12626>

Jackson, J. M., Pimsler, M. L., Oyen, K. J., Koch-Uhuad, J. B., Herndon, J. D., Strange, J. P., Dillon, M. E., & Lozier, J. D. (2018). Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. *Molecular Ecology*, 27(14), 2926–2942. <https://doi.org/10.1111/mec.14735>

Jauker, F., Speckmann, M., & Wolters, V. (2016). Intra-specific body size determines pollination effectiveness. *Basic and Applied Ecology*, 17(8), 714–719. <https://doi.org/10.1016/j.baee.2016.07.004>

Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. *Bioinformatics*, 24(11), 1403–1405. <https://doi.org/10.1093/bioinformatics/btn129>

Jung, V., Violle, C., Mondy, C., Hoffmann, L., & Muller, S. (2010). Intraspecific variability and trait-based community assembly. *Journal of Ecology*, 98(5), 1134–1140. <https://doi.org/10.1111/j.1365-2745.2010.01687.x>

Kendall, L. K., Mola, J. M., Portman, Z. M., Cariveau, D. P., Smith, H. G., & Bartomeus, I. (2022). The potential and realized foraging movements of bees are differentially determined by body size and sociality. *Ecology*, 103(11), e3809. <https://doi.org/10.1002/ecy.3809>

Kendall, L. K., Rader, R., Gagic, V., Cariveau, D. P., Albrecht, M., Baldock, K. C. R., Freitas, B. M., Hall, M., Holzschuh, A., Molina, F. P., Morten, J. M., Pereira, J. S., Portman, Z. M., Roberts, S. P. M., Rodriguez, J., Russo, L., Sutter, L., Vereecken, N. J., & Bartomeus, I. (2019). Pollinator size and its consequences: Robust estimates of body size in pollinating insects. *Ecology and Evolution*, 9(4), 1702–1714. <https://doi.org/10.1002/ece3.4835>

Kerr, N. Z., Crone, E. E., & Williams, N. M. (2019). Integrating vital rates explains optimal worker size for resource return by bumblebee workers. *Functional Ecology*, 33(3), 467–478. <https://doi.org/10.1111/1365-2435.13251>

Kerr, N. Z., Malfi, R. L., Williams, N. M., & Crone, E. E. (2021). Larger workers outperform smaller workers across resource environments: An evaluation of demographic data using functional linear models. *Ecology and Evolution*, 11(6), 2814–2827. <https://doi.org/10.1002/ece3.7239>

Klein, A. M., Boreux, V., Fornoff, F., Mupepele, A. C., & Pufal, G. (2018). Relevance of wild and managed bees for human well-being. *Current Opinion in Insect Science*, 26, 82–88. <https://doi.org/10.1016/j.cois.2018.02.011>

Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. *Proceedings of the Royal Society B: Biological Sciences*, 274(1608), 303–313. <https://doi.org/10.1098/rspb.2006.3721>

Lande, R. (1977). On Comparing Coefficients of Variation. *Systematic Zoology*, 26(2), 214–217. <https://doi.org/10.2307/2412845>

Langlois, A., Jacquemart, A. L., & Piqueray, J. (2020). Contribution of extensive farming practices to the supply of floral resources for pollinators. *Insects*, 11(11), 1–19. <https://doi.org/10.3390/insects11110818>

LeBuhn, G., & Vargas Luna, J. (2021). Pollinator decline: what do we know about the drivers of solitary bee declines? *Current Opinion in Insect Science*, 46, 106–111. <https://doi.org/10.1016/j.cois.2021.05.004>

Lepais, O., Darvill, B., O'Connor, S., Osborne, J. L., Sanderson, R. A., Cussans, J., Goffe, L., & Goulson, D. (2010). Estimation of bumblebee queen dispersal distances using sibship reconstruction method. *Molecular Ecology*, 19(4), 819–831. <https://doi.org/10.1111/j.1365-294X.2009.04500.x>

Lindgren, J. P., & Cousins, S. A. O. (2017). Island biogeography theory outweighs habitat amount hypothesis in predicting plant species richness in small grassland remnants. *Landscape Ecology*, 32(9), 1895–1906. <https://doi.org/10.1007/s10980-017-0544-5>

López-Uribe, M. M., Soro, A., & Jha, S. (2017). Conservation genetics of bees: advances in the application of molecular tools to guide bee pollinator conservation. *Conservation Genetics*, 18(3), 501–506. <https://doi.org/10.1007/s10592-017-0975-1>

Lozier, J. D., Parsons, Z. M., Rachoki, L., Jackson, J. M., Pimsler, M. L., Oyen, K. J., Strange, J., & Dillon, M. E. (2021). Divergence in Body Mass, Wing Loading, and Population Structure Reveals Species-Specific and Potentially Adaptive Trait Variation Across Elevations in Montane Bumble Bees. *Insect Systematics and Diversity*, 5(5), 3. <https://doi.org/10.1093/isd/ixab012>

Malfi, R. L., Crone, E., & Williams, N. (2019). Demographic benefits of early season resources for bumble bee (*B. vosnesenskii*) colonies. *Oecologia*, 191(2), 377–388. <https://doi.org/10.1007/s00442-019-04472-3>

Manel, S., Schwartz, M. K., Luikart, G., & Taberlet, P. (2003). Landscape genetics: combining landscape ecology and population genetics. *Trends in Ecology & Evolution*, 18(4), 189–197. [https://doi.org/10.1016/S0169-5347\(03\)00008-9](https://doi.org/10.1016/S0169-5347(03)00008-9)

Mathiasson, M. E., & Rehan, S. M. (2020). Wild bee declines linked to plant-pollinator network changes and plant species introductions. *Insect Conservation and Diversity*, 13(6), 595–605. <https://doi.org/10.1111/icad.12429>

Maurer, C., Sutter, L., Martínez-Núñez, C., Pellissier, L., & Albrecht, M. (2022). Different types of semi-natural habitat are required to sustain diverse wild bee communities across agricultural landscapes. *Journal of Applied Ecology*, 59(10), 2604–2615. <https://doi.org/10.1111/1365-2664.14260>

McNab, B. K. (2010). Geographic and temporal correlations of mammalian size reconsidered: a resource rule. *Oecologia*, 164(1), 13–23. <https://doi.org/10.1007/s00442-010-1621-5>

Mola, J. M., Pearse, I. S., Boone, M. L., Evans, E., Hepner, M. J., Jean, R. P., Kochanski, J. M., Nordmeyer, C., Runquist, E., Smith, T. A., Strange, J. P., Watson, J., & Koch, J. B. U. (2024). Range-wide genetic analysis of an endangered bumble bee (*Bombus affinis*, Hymenoptera: Apidae) reveals population structure, isolation by distance, and low colony abundance. *Journal of Insect Science*, 24(2), 19. <https://doi.org/10.1093/jisesa/ieae041>

Nooten, S. S., & Rehan, S. M. (2019). Agricultural land use yields reduced foraging efficiency and unviable offspring in the wild bee *Ceratina calcarata*. *Ecological Entomology*, 44(4), 534–542. <https://doi.org/10.1111/een.12730>

Nooten, S. S., & Rehan, S. M. (2022). Effects of land use type and seasonal climate on ground nesting wild bees. *Agricultural and Forest Entomology*, 24(2), 229–236. <https://doi.org/10.1111/afe.12486>

Oliveira, M. O., Freitas, B. M., Schepers, J., & Kleijn, D. (2016). Size and Sex-Dependent Shrinkage of Dutch Bees during One-and-a-Half Centuries of Land-Use Change. *PLOS ONE*, 11(2), e0148983. <https://doi.org/10.1371/journal.pone.0148983>

Osorio-Canadas, S., Flores-Hernández, N., Sánchez-Ortiz, T., & Valiente-Banuet, A. (2022). Changes in bee functional traits at community and intraspecific levels along an elevational gradient in a Mexical-type scrubland. *Oecologia*, 200(1), 145–158. <https://doi.org/10.1007/s00442-022-05248-y>

Ostwald, M. M., Gonzalez, V. H., Chang, C., Vitale, N., Lucia, M., & Seltmann, K. C. (2024). Toward a Functional Trait Approach to Bee Ecology. *Ecology and Evolution*, 14(10), e70465. <https://doi.org/10.1002/ece3.70465>

Packer, L., & Richards, M. H. (2021). *Halictus*. In *Encyclopedia of Social Insects* (pp. 473–476). Springer, Cham. https://link.springer.com/referenceworkentry/10.1007/978-3-030-28102-1_55

Peat, J., Darvill, B., Ellis, J., & Goulson, D. (2005). Effects of climate on intra- and interspecific size variation in bumble-bees. *Functional Ecology*, 19(1), 145–151. <https://doi.org/10.1111/j.0269-8463.2005.00946.x>

Pedrazzini, C., Strasser, H., Zemp, N., Holderegger, R., Widmer, F., & Enkerli, J. (2023). Spatial and temporal patterns in the population genomics of the European cockchafer *Melolontha melolontha* in the Alpine region. *Evolutionary Applications*, 16(9), 1586–1597. <https://doi.org/10.1111/eva.13588>

Peralta, G., Resasco, J., Worthy, S., Frost, C. M., Guevara, A. T., Manning, I., Cagnolo, L., & Burkle, L. A. (2024). Pollinator intraspecific body size variation and sociality influence their interactions with plants. *Functional Ecology*, 38(4), 875–882. <https://doi.org/10.1111/1365-2435.14511>

Phillips, B. B., Wallace, C., Roberts, B. R., Whitehouse, A. T., Gaston, K. J., Bullock, J. M., Dicks, L. V., & Osborne, J. L. (2020). Enhancing road verges to aid pollinator conservation: A review. *Biological Conservation*, 250, 108687. <https://doi.org/10.1016/j.biocon.2020.108687>

Plateaux-Quénou, C., Plateaux, L., & Packer, L. (1989). Biological notes on *Evylaeus villosulus* (K.) (Hymenoptera, Halictidae), a bivoltine, largely solitary halictine bee. *Insectes Sociaux*, 36(4), 245–263. <https://doi.org/10.1007/BF02224879>

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: Trends, impacts and drivers. *Trends in Ecology and Evolution*, 25(6), 345–353. <https://doi.org/10.1016/j.tree.2010.01.007>

Potts, S. G., Imperatriz-Fonseca, V., Ngo, H. T., Aizen, M. A., Biesmeijer, J. C., Breeze, T. D., Dicks, L. V., Garibaldi, L. A., Hill, R., Settele, J., & Vanbergen, A. J. (2016). Safeguarding pollinators and their values to human well-being. *Nature*, 540(7632), 220–229. <https://doi.org/10.1038/nature20588>

Raine, E. H., Gray, C. L., Mann, D. J., & Slade, E. M. (2018). Tropical dung beetle morphological traits predict functional traits and show intraspecific differences across land uses. *Ecology and Evolution*, 8(17), 8686–8696. <https://doi.org/10.1002/ece3.4218>

Redhead, J. W., Dreier, S., Bourke, A. F. G., Heard, M. S., Jordan, W. C., Sumner, S., Wang, J., & Carvell, C. (2016). Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species. *Ecological Applications: A Publication of the Ecological Society of America*, 26(3), 726–739. <https://doi.org/10.1890/15-0546>

Renauld, M., Hutchinson, A., Loeb, G., Poveda, K., & Connelly, H. (2016). Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee. *PLOS ONE*, 11(3), e0150946. <https://doi.org/10.1371/journal.pone.0150946>

Rubenstein, D. R., & Abbot, P. (2017). *Comparative Social Evolution*. Cambridge University Press.

Samnegård, U., Persson, A. S., & Smith, H. G. (2011). Gardens benefit bees and enhance pollination in intensively managed farmland. *Biological Conservation*, 144(11), 2602–2606. <https://doi.org/10.1016/j.biocon.2011.07.008>

Scheper, J., Reemer, M., van Kats, R., Ozinga, W. A., van der Linden, G. T. J., Schaminée, J. H. J., Siepel, H., & Kleijn, D. (2014). Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. *Proceedings of the National Academy of Sciences*, 111(49), 17552–17557. <https://doi.org/10.1073/pnas.1412973111>

Schmitt, S., & Boisseaux, M. (2023). Higher local intra- than interspecific variability in water- and carbon-related leaf traits among Neotropical tree species. *Annals of Botany*, 131(5), 801–811. <https://doi.org/10.1093/aob/mcad042>

Simons, N. K., Weisser, W. W., & Gossner, M. M. (2016). Multi-taxa approach shows consistent shifts in arthropod functional traits along grassland land-use intensity gradient. *Ecology*, 97(3), 754–764. <https://doi.org/10.1890/15-0616.1>

Spaethe, J., & Weidenmüller, A. (2002). Size variation and foraging rate in bumblebees (*Bombus terrestris*). *Insectes Sociaux*, 49(2), 142–146. <https://doi.org/10.1007/s00040-002-8293-z>

Tommasi, N., Pioltelli, E., Biella, P., Labra, M., Casiraghi, M., & Galimberti, A. (2022). Effect of urbanization and its environmental stressors on the intraspecific variation of flight functional traits in two bumblebee species. *Oecologia*, 199(2), 289–299. <https://doi.org/10.1007/s00442-022-05184-x>

Ulrich, Y., Perrin, N., & Chapuisat, M. (2009). Flexible social organization and high incidence of drifting in the sweat bee, *Halictus scabiosae*. *Molecular Ecology*, 18(8), 1791–1800. <https://doi.org/10.1111/j.1365-294X.2009.04154.x>

Vaudo, A. D., Tooker, J. F., Grozinger, C. M., & Patch, H. M. (2015). Bee nutrition and floral resource restoration. *Current Opinion in Insect Science*, 10, 133–141. <https://doi.org/10.1016/j.cois.2015.05.008>

Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C., Jung, V., & Messier, J. (2012). The return of the variance: intraspecific variability in community ecology. *Trends in Ecology & Evolution*, 27(4), 244–252. <https://doi.org/10.1016/j.tree.2011.11.014>

Waples, R. K., Larson, W. A., & Waples, R. S. (2016). Estimating contemporary effective population size in non-model species using linkage disequilibrium across thousands of loci. *Heredity*, 117(4), 233–240. <https://doi.org/10.1038/hdy.2016.60>

Warzecha, D., Diekötter, T., Wolters, V., & Jauker, F. (2016). Intraspecific body size increases with habitat fragmentation in wild bee pollinators. *Landscape Ecology*, 31(7), 1449–1455. <https://doi.org/10.1007/s10980-016-0349-y>

Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. *Evolution*, 38(6), 1358–1370. JSTOR. <https://doi.org/10.2307/2408641>

Widmer, A., & Schmid-Hempel, P. (1999). The population genetic structure of a large temperate pollinator species, *Bombus pascuorum* (Scopoli) (Hymenoptera: Apidae). *Molecular Ecology*, 8(3), 387–398. <https://doi.org/10.1046/j.1365-294X.1999.00584.x>

Williams, N. M., Crone, E. E., Roulston, T. H., Minckley, R. L., Packer, L., & Potts, S. G. (2010). Ecological and life-history traits predict bee species responses to environmental disturbances. *Biological Conservation*, 143(10), 2280–2291. <https://doi.org/10.1016/j.biocon.2010.03.024>

Wright, S. (1943). Isolation by distance. *Genetics*, 28(2), 114–138. <https://doi.org/10.1093/genetics/28.2.114>

Yang, J., Lu, J., Chen, Y., Yan, E., Hu, J., Wang, X., & Shen, G. (2020). Large Underestimation of Intraspecific Trait Variation and Its Improvements. *Frontiers in Plant Science*, 11. <https://doi.org/10.3389/fpls.2020.00053>