Relevant articles

Bailes E.J., Bagi J., Coltman J., Fountain M.T., Wilfert L., Brown M.J.F . (2020) Host density drives viral, but not trypanosome, transmission in a key pollinator. Proceedings of the Royal Society of London B 287: 20191969. DOI
Bartomeus I., Saavedra S., Rohr R.P., Godoy O. (2021) Experimental evidence of the importance of multitrophic structure for species persistence Experimental evidence of the importance of multitrophic structure for species persistence. Proceedings of the National Academy of Sciences 118: DOI
Bartomeus, I., Ascher, J.S., Gibbs, J., Danforth, B.N., Wagner, D.L., Hedtke, S.M. and Winfree, R., (2013) Historical changes in northeastern US bee pollinators related to shared ecological traits. Proceedings of the National Academy of Sciences 110: 4656-4660. DOI
Bartomeus, I., Ascher, J.S., Wagner, D., Danforth, B.N., Colla, S., Kornbluth, S. and Winfree, R., (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of Sciences 108: 20645-20649. DOI
Bartomeus, I., Park, M.G., Gibbs, J., Danforth, B.N., Lakso, A.N. and Winfree, R., (In press) Biodiversity ensures plant–pollinator phenological synchrony against climate change. Ecology letters 16: 1331-1338. DOI
Biella, P., Ćetković, A., Gogala, A., Neumayer, J., Sárospataki, M.,Sima, P. and Smetana, V. (2021) Northwestward range expansion of the bumblebee Bombus haematurus into Central Europe is associated with warmer winters and niche conservatism. Insect Science 28: 861-872. DOI
Bihaly, Á., Kovács-Hostyánszky, A., Szalai, M., Sárospataki, M. (2021) Nesting activity of cavity-nesting bees and wasps is lower in small-scale apple orchards compared to nearby semi-natural habitats. Agricultural and Forest Entomology 23: 48-59. DOI
Breeze T.D., Bailey A.P., Balcombe K.G., Brereton T., Comont R., Edwards M., Garratt M.P., Harvey M., Hawes C., Isaac N., Jitlal M., Jones C., Kunin W.E., Lee P., O’Connor R. S., Morris R.K.A., Musgrove A., Peyton J., Potts S.G., Roberts S.P.M., Roy D.B., Roy H.E., Tang C.Q., Vanbergen A.J. and Carvell C. (2021) Pollinator onitoring More Than Pays for Itself. Journal of Applied Ecology 58: 44-57. DOI
Brown M.J.F. (2022) Complex networks of parasites and pollinators: moving towards a healthy balance. Philosophical Transactions of the Royal Society B 377: 20210161. DOI
Brown M.J.F., Dicks L.V., Paxton R.J., Baldock K.C.R., Barron A.B., Chauzat M.-P., Freitas B.M., Goulson D., Jepsen S., Kremen C., Li J., Neumann P., Pattemore D.E., Potts S.G., Schweiger O., Seymour C.L., Stout J.C. (2016) A horizon scan of future threats and opportunities for pollinators and pollination. PeerJ 4: e2249. DOI
Cappellari, A., Bonaldi, G., Mei, M., Paniccia, D., Cerretti, P., & Marini, L. (2022) Functional traits of plants and pollinators explain resource overlap between honeybees and wild pollinators. Oecologia 198: 1019-1029. DOI
Capriolo A., Boschetto R.G., Mascolo R.A., Balbi S. and Villa F. (2020) Biophysical and economic assessment of four ecosystem services for natural capital accounting in Italy. Ecosystem Services 46: 101-207. DOI
Carvell, C., Bourke, A. F. G., Dreier, S., Freeman, S. N., Hulmes, S., Jordan, W. C., Redhead, J. W., Sumner, S., Wang, J. & Heard, M. S. (2017) Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543: 547-549. DOI
Demeter, I., Balog, A., Sárospataki, M. (2021) Variation of small and large wild bee communities under honey bee pressure in highly diverse natural habitats. Frontiers in Ecology and Evolution 9: DOI
Dicks L.V., Breeze T.D., Ngo H., Senapathi D., An J., Aizen M., Báldi A., Basu P., Buchori D., Galetto L., Garibaldi L., Gemmill-Herren B., Howlett B., Imperatriz-Fonseca V., Johnson S., Kovács-Hostyánszki A., Kwon Y.J., Lattorff M., Lungharwo T., Seymour C., Vanbergen A., & Potts S.G. (2021) A global-scale expert assessment of drivers and risks associated with pollinator decline. Nature Ecology & Evolution 5: 1453-1461. DOI
Dicks, L.V., Viana, B., Bommarco, R., Brosi, B., M.C .Arizmendi, M., Cunningham, S.A., Galetto, L., Hill, R., Lopes, A.V., Pires, C., Taki, H., Cooper, D., Potts S.G. (2016) Ten policies for pollinators. Science 354: 975-976.
Ekroos, J., Kleijn, D., Batáry, P., Albrecht, M., Báldi, A., Blüthgen, N., Knop, E., Kovács-Hostyánszki, A., Kühsel, S. & Smith, H.G. (2020) High land-use intensity in grasslands constrains wild bee species richness in Europe. Biological Conservation 241: DOI
Fantinato E, Sonkoly J, Török P, Buffa G (2021) Patterns of pollination interactions at the community level are related to the type and quantity of floral resources. British Ecological Society 35: 2461-2471. DOI
Fijen, T.P.M., Scheper, J.A., Boom, T.M., Janssen, N., Raemakers, I., & Kleijn, D. (2018) Insect pollination is as important for marketable crop yield as plant quality. Ecology Letters 21: 1704-1731. DOI
Fürst M.A., McMahon D.P., Osborne J.L., Paxton R.J., Brown M.J.F. (2014) Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506: 364-366.
Ganuza C, Redlich S, Uhler J, Tobisch C, Rojas-Botero S, Peters M, Zhang J, Benjamin C, Englmeier J, Ewald J, Fricke U, Haensel M, Kollmann J, Riebl R, Uphus L, Müller J, Steffan-Dewenter I (2022) Interactive effects of climate and land use on pollinator diversity differ among taxa and scales. Science Advances 8: DOI
Gardner E., Breeze T.D., Clough Y., Smith H., Baldock K., Campbell A., Garratt M.P., Gillespie M., Kunin W.E., McKercher M., Memmott J., Potts S.G., Senapathi G.D., Stone G., Wackers F., Westbury D., Wilby A. and Oliver T. (2020) Reliably Predicting Pollinator Abundance: Challenges of Process Based Ecological Models. Methods in Ecology and Evolution 11: 1673-1689. DOI
Garibaldi L.A., Steffan-Dewenter I., Winfree R., Aizen M.A., Bommarco R., Cunningham S.A., Kremen C., Carvalheiro L.G., Afik O., Bartomeus I., Benjamin F., Cariveau D., Chacoff N.P., Dudenhöffer J.H., Freitas B., Greenleaf S., Harder L., Hipólito J., Holzschuh A., Howlett B., Isaacs R., Javorek S.K., Kennedy C., Krewenka K., Mandelik Y., Mayfield M.M., Motzke I., Munyuli T., Nault B.A., Otieno M., Petersen J., Pisanty G., Potts S.G., Rader R., Ricketts T.H., Rundlöf M., Seymour C., Schüepp C., Smitha K., Szentgyörgyi H., Taki H., Tscharntke T., Vergara C.H., Viana B.F., Wanger T.C., Westphal C., Williams N., Klein A.M. (2013) Wild pollinators enhance fruit set of crops regardless of honey-bee abundance. Science 339: 1608-1611.
Garibaldi, L. A., Carvalheiro, L. G., Vaissière, B. E., Gemmill-Herren, B., Hipólito, J., Freitas, B. M., Ngo, H. T., Azzu, N., Sáez, A., Åström, J., An, J., Blochtein, B., Buchori, D., García, F. J. C., Oliveira da Silva, F., Devkota, K., Ribeiro, M. d. F., Freitas, L., Gaglianone, M. C., Goss, M., Irshad, M., Kasina, M., Filho, A. J. S. P., Kiill, L. H. P., Kwapong, P., Parra, G. N., Pires, C., Pires, V., Rawal, R. S., Rizali, A., Saraiva, A. M., Veldtman, R., Viana, B. F., Witter, S. & Zhang, H. (2016) Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351: 388-391. DOI
Geppert, C., Cappellari, A., Corcos, D., Caruso, V., Cerretti, P., Mei, M., & Marini, L. (2022) Temperature and not landscape composition shapes wild bee communities in an urban environment. Insect Conservation and Diversity DOI
Holzschuh A, Dainese M, González-Varo JP, Mudri-Stojnić S, Riedinger V, Rundlöf M, Scheper J, Wickens JB, Wickens VJ, Bommarco R, Kleijn D, Potts SG, Roberts SPM, Smith HG, Vilà M, Vujić A, Steffan-Dewenter I (2016) Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecology Letters 19: 1228-1236. DOI
Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I (2013) Mass-flowering crops enhance wild bee abundance. Oecologia 172: 477-484. DOI
Hopfenmüller S, Holzschuh A, Steffan-Dewenter I (2020) Effects of grazing intensity, habitat area and connectivity on snail-shell nesting bees. Biological Conservation 242: n/a. DOI
Hopfenmüller S, Steffan-Dewenter I, Holzschuh A (2014) Trait-specific responses of wild bee communities to landscape composition, configuration and local factors. PLoS One 9: n/a. DOI
Hutchinson L.A., Oliver T.H., Breeze T.D., Bailes E.J., Bruenjs L., Campbell A.J., Erhardt A., de Groot G.A., Földesi R., García D., Goulson D., Hainaut H., Hambäck P.A., Holzschuh A., Jauker F., Klatt B.J., Klein A.M., Kleijn D., Kovács-Hostyánszki A., Krimmer E., McKerchar M., Miñarro M, Phillips B.B., Potts S.G., Pufal G., Radzevičiūtė R, Roberts S.P.M, Samnegård U., Schulze J., Shaw R., Tscharntke T., Vereecken N.J., Westphal C., Weitzke A., Woodcock B.A. and Garratt M.P. (2021) Using field survey and ecological trait data to determine the wild bee pollinators of crops in Great Britain. Agriculture, Ecosystems and Environment 315: 107477. DOI
Jha, S. & Kremen, C. (2013) Resource diversity and landscape-level homogeneity drive native bee foraging. PNAS 110: 555-558. DOI
Kerr J.T., Pindar A., Galpern P., Packer L., Potts S.G., Roberts S.P.M., Rasmont P., Schweiger O., Colla S.R., Richardson L.L., Wagner D.L., Gall L.F., Sikes D.S., Pantoja A. (2015) Climate change impacts on bumblebees converge across continents. Science 349: 177-180. DOI
Kleijn, D., Linders, T., Stip, A., Biesmeijer, J.C., Wäckers, F.L. & Bukovinszky, T. (2018) Scaling up effects of measures mitigating pollinator loss from local- to landscape-level population responses. Methods in Ecology and Evolution 9: 1727–1738. DOI
Kleijn, D., Winfree, R., Bartomeus, I., Carvalheiro, L.G., Henry, M., Isaacs, R., Klein, A.M., Kremen, C., M'Gonigle, L.K., Rader, R., Ricketts, T., Williams, N.M., Adamson, N.L., Ascher, J.S., Báldi, A., Batáry, P., Benjamin, F., Biesmeijer, J.C., Blitzer, E.J., Bommarco, R., Brand, M.R., Bretagnolle, V., Button, L., Cariveau, D. P., Chifflet, R., Colville, J.F., Danforth, B.N., Elle, E., Garratt, M.P., Herzog, F., Holzschuh, A., Howlett, B.G., Jauker, F., Jha, S., Knop, E., Krewenka, K.M., Le Féon, V., Mandelik, Y., May, E.A., Park, M.G., Pisanty, G., Reemer, M., Riedinger, V., Rollin, O., Rundlöf, M., Sardiñas, H.S., Scheper, J., Sciligo, A.R., Smith, H.G., Steffan-Dewenter, I., Thorp, R., Tscharntke, T., Verhulst, J., Viana, B.F., Vaissière, B.E., Veldtman, R., Westphal, C. & Potts, S.G. (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications 6: DOI
Koh I., Lonsdorf E. V., Williams N. M., Brittain C., Isaacs R., Gibbs J., Ricketts T. H. (2016) Modelling the status, trends, and impacts of wild bee abundance in the United States. Proceedings of the National Academy of Sciences of the United States of America 113: 140-145. DOI
Lajos, K., Demeter, I., Mák, R., Balog, A., Sárospataki, M. (2021) Preliminary assessment of cavity-nesting Hymenopterans in a low-intensity agricultural landscape in Transylvania. Ecology and Evolution 11: 11903-11914. DOI
Lajos, K., Samu, F., Bihaly, Á.D., Fülöp, D., Sárospataki, M. (2021) Landscape structure affects the sunflower visiting frequency of insect pollinators. Scientific Reports 11: DOI
Li, P., Kleijn, D., Badenhausser, I. Zaragoza-Trello, C., Gross, N., Raemakers, I. & Scheper, J. (2020) The relative importance of green infrastructure as refuge habitat for pollinators increases with local land-use intensity. Journal of Applied Ecology 57: 1494-1503. DOI
Martin EA, Dainese M, Clough Y, Baldi A, Bommarco R, Gagic V, Garratt MPD, Holzschuh A., Kleijn D, Kovacs-Hostyanszki A, Marini L, Potts SG, Smith HG, Al Hassan D, Albrecht M, Andersson GKS, Asis JD, Aviron S, Balzan MV, Banos-Picon L, Bartomeus I, Batary P, Burel F, Caballero-Lopez B, Concepcion ED, Coudrain V, Dänhardt J, Diaz M, Diekötter T, Dormann CF, Duflot R, Entling MH, Farwig N, Fischer C, Frank T, Garibaldi LA, Hermann J, Herzog F, Inclan D, Jacot K, Jauker F, Jeanneret P, Kaiser M, Krauss J, Le Feon V, Marshall J, Moonen A-C, Moreno G, Riedinger V, Rundlöf M, Rusch A, Scheper J, Schneider G, Schüepp C, Stutz S, Sutter L, Tamburini G, Thies C, Tormos J, Tscharntke T, Tschumi M, Uzman D, Wagner C, Zubair-Anjum M, Steffan-Dewenter I (2019) The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters 22: 1083–1094. DOI
McMahon D.P., Fürst M.A., Casper J., Theodorou P., Brown M.J.F., Paxton R.J. (2015) A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. Journal of Animal Ecology 84: 615-624.
Monticelli, L. S., Labonté, A., Turpin, M., Biju-Duval, L., Felten, E., Laurent, E., Matejicek, A., Vieren, E., Deytieux, V., Cordeau, S. & Vanbergen, A. J. (2022) Agroecological farming, flowering phenology and the pollinator–herbivore–parasitoid nexus regulate non-crop plant reproduction. Journal of Applied Ecology 59: 2046– 2058. DOI
Potts S.G, Biesmeijer J.C., Kremen C., Neumann P., Schweiger O., Kunin W.E. (2010) Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution 25: 345-353. DOI
Potts S.G., Imperatriz-Fonseca V., Ngo H.T., Aizen M.A., Biesmeijer J.C., Breeze T.D., Dicks L.V., Garibaldi L.A., Hill R., Settele J., Vanbergen A.J. (2016) Safeguarding pollinators and their values to human well-being. Nature 540: 220-229.
Potts, S.G., Dauber, J., Hochkirch, A., Oteman, B., Roy, D.B., Ahrné, K., Biesmeijer, K., Breeze, T.D., Carvell, C., Ferreira, C., FitzPatrick, Ú., Isaac, N.J.B., Kuussaari, M., Ljubomirov, T., Maes, J., Ngo, H., Pardo, A., Polce, C., Quaranta, M., Settele, J., Sorg, M., Stefanescu, C., Vujić, A. (2021) Proposal for an EU Pollinator Monitoring Scheme. Publications Office of the European Union DOI
Powney, G. D., Carvell, C., Edwards, M., Morris, R. K. A., Roy, H. E., Woodcock, B. A. & Isaac, N. J. B. (2019) Widespread losses of pollinating insects in Britain. Nature Communications 10: 1018.
Proesmans, W., Albrecht, M., Gajda, A., Neumann, P., Paxton, R. J., Pioz, M., Polzin, C., Schweiger, O., Settele, J., Szentgyörgyi, H., Thulke, H.-H. & Vanbergen, A. J. (2021) Pathways for Novel Epidemiology: Plant–Pollinator–Pathogen Networks and Global Change. Trends in Ecology & Evolution 36: 623-636. DOI
Pywell, R. F., Heard, M. S., Woodcock, B. A., Hinsley, S., Ridding, L., Nowakowski, M. & Bullock, J. M. (2015) Wildlife-friendly farming increases crop yield: evidence for ecological intensification. Proc Biol Sci 282: 20151740. DOI
Redhead J. W., Woodcock B. A., Pocock M. J. O., Pywell R. F., Vanbergen A. J., Oliver T. H. (2018) Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecology Letters DOI
Ricketts T. H., Lonsdorf E. (2013) Mapping the margin: Comparing marginal values of tropical forest remnants for pollination services. Ecological Applications 23: 1113–1123. DOI
S.G. Potts, V. L. Imperatriz-Fonseca, H. T. Ngo, J. C. Biesmeijer, T. D. Breeze, L. V. Dicks, L. A. Garibaldi, R. Hill, J. Settele, A. J. Vanbergen, M. A. Aizen, S. A. Cunningham, C. Eardley, B. M. Freitas, N. Gallai, P.G. Kevan, A. Kovács-Hostyánszki, P.K. Kwapong, J. Li, X. Li., D.J. Martins, G. Nates-Parra, J.S. Pettis, R. Rader, and B. F. Viana (eds.). (2016) Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany DOI
Schenk M, Krauss J, Holzschuh A (2018) Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees. Journal of Animal Ecology 87: 139-149. DOI
Sliva F.D.S., Carvalheiro L.G., Aguierrez-Guttiez J., Lucotte M., Guidoni-Martins K., and Mertens F. (2021) Virtual pollination trade uncovers global dependence on biodiversity of developing countries. Science Advances 7: DOI
Stanley D.A., Garratt M.P.D., Wickens J.B., Wickens V.J., Potts S.G., Raine N.E. (2015) Neonicotinoid pesticide exposure impairs crop pollination services delivered by bumblebees. Nature 528: 548-550.
Tremlett C.J., Peh K.S.H, Zamora-Gutierrez V. and Schaafsma M (2021) Value and benefit distribution of pollination services provided by bats in the production of cactus fruits in central Mexico. Ecosystem Services 47: 101-197. DOI